博弈论(巴什博奕/尼姆博奕/威佐夫博奕)详解

博弈论 ,是经济学的一个分支,主要研究具有竞争或对抗性质的对象,在一定规则下产生的各种行为。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略

通俗地讲,博弈论主要研究的是:在一个游戏中,进行游戏的多位玩家的策略

对于算法竞赛中的博弈问题,一般具有以下特征:

博弈模型为两人轮流决策的非合作博弈。即两人轮流进行决策,并且两人都使用最优策略来获取胜利
博弈是有限的。即无论两人怎样决策,都会
在有限步后决出胜负
公平博弈。即两人进行决策所遵循的规则相同

(一)巴什博弈

术语:正经人称(m+1)的局面为奇异局势

1堆n个石子每次最多取m个、最少取1个--------(m+1的局势)

情形一:如果n=m+1,那么由于一次最多只能取m个,所以无论先者拿走多少个,后者都能够一次拿走剩余的物品,后者必胜

情形二:如果n=(m+1)*r+s,(r为任意自然数且s≤m),那么先者要拿走s个物品,如果后者拿走k(1≤k≤m)个,那么先者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先者必胜

情形三:如果n=(m+1)*r,先者拿走k(1≤k≤m)个,那么后者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,则后者必胜

总之,只要给对手留下(m+1)的倍数,就能获胜。(m+1)的倍数则后者比赛,反之先者必胜

变式

两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜(等价于从一堆100个石子中取石子,最后取完的胜)

例题:POJ2368 -- Buttons

解法一:数据为10^8,会TLE

#include<cstdio>
#include<iostream>
#define int long long 
using namespace std;

signed main(){
	int n;
	cin>>n;
	for(int i=2;i<n;i++){
		if(n%(i+1)==0){
			cout<<i;
			return 0;
		}
	}
	cout<<0;
	return 0;
}

解法二:遍历一遍n的所有因数并存起来,再输出最小大于等于3的因数减1

#include<iostream>
#include<algorithm>
#define int long long
using namespace std;

const int N=10005;
int a[N];
signed main(){
	int n,t=0;
	cin>>n;
	for(int i=1;i*i<=n;i++){
		if(n%i==0&&i*i!=n){
			a[++t]=i;
			a[++t]=n/i;
		}else if(n%i==0&&i*i==n){
			a[++t]=i;
		}
	}
	sort(a+1,a+t+1);
	for(int i=1;i<=t;i++){
		if(a[i]>=3){
			cout<<a[i]-1;
			break;
		}
	}	
	return 0;
} 

(二)尼姆博弈

术语:正经人称(m,m)的局面为奇异局势

n堆石子,每堆石子的数量是a1,a2,a3……,二个人依次从这些石子堆中的一个拿取任意的石子,至少一个,最后一个拿光石子的人胜利

情形一:n=1,先手全拿,先手必胜

情形二:n=2,有两种情况,一种可能相同,一种情况一堆比另一堆少或多

             (1)(m,m) 按照“有一学一,照猫画猫”法,后手必胜

             (2)(m,M)先手先从多的一堆中拿出(M-m)个,此时后手面对(m,m)的局面,先手必胜

情形三:n=3,(m,m,M)先手必胜,先手可以先拿M,之后变成了(m,m,0)的局面,是不是很熟悉~

 (a1,a2,a3)的话,举个例子(1,2,3),先手取完之后可能的局面为(0,2,3),(1,1,3),(1,0,3),(1,2,2),(1,2,1),(1,2,0)都是之前讲过的

异或为0,先手必输 ,后手必胜

(三)威佐夫博弈

两堆各若干个物品,两个人轮流从任一堆取至少一个或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜

先手必输局势的规律(奇异局势)无论先手怎么取,后手必胜

  • 第一种(0,0)
  • 第二种(1,2)
  • 第三种(3,5)
  • 第四种  (4,7)
  • 第五种(6,10)
  • 第六种  (8,13)              
  • 第七种  (9,15)
  • 第八种  (11,18)
  • 第n种(a,b)

他们的差值递增的,分别是0,1,2,3,4,5,6,7......n

还有一个规律(正常人都发现不了):a=(b-a)*1.618向下取整!!!!!

a=int(b-a)*1.618

注:这里的int是强制类型转换,注意这不是简单的四舍五入,假如后面的值是3.9,转换以后得到的不是4而是3,也就是说强制int类型转换得到的是不大于这个数值的最大整数。

有些题目要求精度较高,我们可以用下述式子来表示这个值:

1.618=(sqrt(5.0)+1)/2;   

头文件:include<math.h>

例题:POJ1067 -- 取石子游戏

#include<iostream>
#include<cmath>
#define int long long
using namespace std;

signed main(){
	double a,b;
	while(cin>>a>>b){
		if(a>b){
			swap(a,b);
		}
		double x=(int)((b-a)*((sqrt(5.0)+1)/2));
		if(a==x){
			cout<<0<<endl;
		}else{
			cout<<1<<endl;
		}
	}
	return 0;
}

 

  • 3
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古谷彻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值