c++快排和归并排序,整数二分和浮点二分,高精度加减乘 法

基础算法(一):


1,排序

​ 高效快速的排序法有快速排序归并排序(考虑到时间复杂度,如果数据过大,一般的冒泡或者sort容易超时,这时候我们的快排和归并排序就发挥了作用),其中快速排序归并排序在于前者是先排序递归到下一层排序,后者是先递归到最底层排序然后回到上一层重复排序的操作。

这里比较简单

直接上快排的代码:

#include<bits/stdc++.h>
using namespace std;

const int N = 1e6+10;

int a[N];

void quick_sort(int l,int r)
{
	if(l>=r) return;		//递归终止的条件
	
	int mid = r+l >>1;		//相当于mid=(r+l)/2
	int x = a[mid];
	int i = l-1,j = r+1;     //这里的i和j代表着从左和从右边开始的指针
	
	while(i<j)
	{
		do i++;while(a[i]<x);			//分别遍历,直到找到满足需要换位置的条件
		do j--;while(a[j]>x);
		if(i < j) swap(a[i],a[j]);			//因为从小到大排序,所以再x左边的数一定要小于x,右边同理
	}
	
	quick_sort(l,j);				//进入下一层
	quick_sort(j+1,r);
}

int main()
{
	int n;
	cin>>n;
	
	for(int i = 0;i < n;++ i)	cin>>a[i];

	quick_sort(0,n-1);
	
	for(int i = 0;i < n;++ i) cout<<a[i]<<" ";
	
	return 0;

接下来是归并排序的模板:

#include<bits/stdc++.h>
using namespace std;

const int N = 1e6+10;

int a[N],b[N];

void merge_sort(int l ,int r)
{
	if(l >= r) return;			//同样是递归终止的条件
	int mid = l+r>>1;			
	
	merge_sort(l,mid);				//进入下一层递归中
	merge_sort(mid+1,r);
	
	int k = 0,i = l,j = mid+1;
	
	while(i<=mid&&j<=r)						//这里的i和j都是下标(要注意!!!)
	{
		if(a[i]<a[j]) b[k++]=a[i++];		//将数组分成两组,i的一组一定要满足小于j的一组
		else b[k++]=a[j++];					//如果i中有比j的大的数,那么就吧j放在前面
	}
	while(i<=mid) b[k++]=a[i++];
	while(j<=r) b[k++]=a[j++];
	
	for(int i = l,j = 0;i <= r;i ++,j ++) a[i]=b[j];   //将数组重新回归到a[i]中去
}

int main()
{
	int n;
	
	cin>>n;
	
	for(int i = 0;i < n;i ++) cin>>a[i];
	
	merge_sort(0,n-1);
	
	for(int i = 0;i < n;i ++ ) cout<<a[i]<<" ";

	return 0;
}

2,二分查找

2,1整数二分

整数二分的情况比较复杂,需要考虑边界问题,这里我们边写边分析:

int l=0,r=n-1;	//假定数组是单调的(这里的0和n-1是数组的下标)
int x;	cin>>x;			//x为要查找的数
while(l<r)
{
	int mid=l+(r-l)/2;		//为什么不直接写mid=(r+l)/2呢,是为了防止数值溢出;
	if(a[mid]>=x) r=mid;	//因为a[mid]在x的右边,所以要缩小右边的范围,即让r=mid
	else l=mid+1;			//同理 l=mid+1;
}
if(a[l]==x) cout<<l<<endl; 	//输出下标
else  cout<<"NO"<<endl;		//如果从左往右遍历完仍没有这个数,说明数组中不存在这个数

完整的代码如下(要注意的是这个是查找左边界后面会讲):

#include<bits/stdc++.h>
using namespace std;

const int N = 1e6+10;

int a[N];

int main()
{
	int n,x;
    cin>>n>>x;
    
    for(int i = 0; i < n;i ++) cin>>a[i];
    
    int l=0,r=n-1;
    while(l<r)
    {
    	int mid = (r-l)/2+l;
    	if(a[mid]>=x) r=mid;
    	else l=mid+1;
    }
	if(a[l] == x) cout<<l<<endl;
	else cout<<"NO"<<endl;
	return 0;
}

为什么说是查找左边界

例如1 2 5 5 8 10这个数组,我们如果要查找5这个数,那么上述代码只可以输出的下标为2

下面我们来分析一下右边界的情况:

int l = 0,r = n-1;  //和上面的一样为数组下标;
int x;  cin>>x;
while(l<r)
{
	int mid = l+(r-l+1)/2;		//这里为什么要加一呢,这个是为了防止出现死循环,在下面我会详细讲一下
	if(a[mid] <= x) l = mid;	//判断右边界
	else r = mid-1;				//同理,给出等价关系式
}
if(a[i] == x) cout<<l<<endl;			//这里输出l和r其实是一样的,因为循环结束的条件就是l==r
else cout<<"NO"<<endl;

  • 现在来说一下为什么要mid=(r-l+1)/2+l

​ 假设我们还是用mid = (r-l+1)/2+l,我们来手动模拟一下:

​ 假设这里有一个数组1 2,如果我们要查找’2‘这个数,那么mid=(1+0)/2的结果应该是0,a[0]=1小于x,那么l=mid应该是0,即一次循环后l和r的值都没有发生变换,那么就会陷入死循环

2,2浮点二分

​ 浮点二分就简单多了,没有那么多的边界情况

​ 这里我们引入一个例题来完成这个代码:

输入一个数字x(1=<x<=1000000) 求它的三次方根

#include<bits/stdc++.h>
using namespace std;

double cheak(double x)
{
	return x*x*x;
}

int main()
{
	double x;
	cin>>x;
	double l = 1.0,r = x;			//一个范围为1~1000000的数,其三次方根一定在1~1000000范围内
	while(r-l>1e-6)					//这里是防止精度不同,所以不能直接r>l		
	{
		double mid=(l+r)/2;			//相当于除二
		if(cheak(mid)>x) r=mid;
		else l=mid;
	}
	
	printf("%.2f",l);
	return 0;
}

3,高精度

这里我们先不用stl,先学会最基础

3.1高精度加减法
  • 高精度加法

​ 这里我们考虑高精度加高精度,如何将高精度储存和计算呢?这个就需要用字符串来储存和计算

​ 我们先回忆一下我们小学是怎么算两数之和的? 是不是从个位开始加,然后逢十进一,那么接下来我们用代码实现一下:

#include<bits/stdc++.h>
using namespace std;

string add(string a,string b)
{
    string c;
     
    reverse(a.begin(),a.end());			//反转a,b目的是从后往前进位;
    reverse(b.begin(),b.end());
    
    if(a.size()<b.size()) swap(a,b);		//将位数多的那一个数放在a里面,方便后面的计算
    int t = 0;								//用t表示每一次进位的值
    for(int i = 0;i < a.size();i ++)
    {
        t+=a[i]-'0';
        if(i<b.size()) t+=b[i]-'0';		//这里是处理数据,大家可以手动模拟一下
        c+=t%10+'0';
        t/=10;
    }
    if(t) c+=t/10+'0';					//判断最后一次加法有没有进位一;
    reverse(c.begin(),c.end());			//将c反转后返回
    
    return c;
}

int main()
{
	string a,b,c;			//给定三个字符串来存放数字
    
    cin>>a>>b;
    
    c=add(a,b);
    
    cout<<c;

	return 0;
}
  • 高精度减法

    和高精度加法一样,这里我们直接给出:

    #include<bits/stdc++.h>
    using namespace std;
    
    bool cheak(string a,string b)					//判断a与b的大小
    {
    	if(a.size()>b.size()) return true;
        else if(a.size()<b.size()) return false;
    	else 
        {
            for(int i = 0;i <a.size();i ++ )
            {
                if(a[i]>b[i]) return true;
                if(a[i]<b[i]) return false;
    		}
        }
        return false;
    }
    
    string sub(string a,string b)
    {
    	string c;
        int t = 0;
        
        reverse(b.begin(),b.end());
        for(int i = 1;i <= a.size()-b.size();i++) b+='0';		//这个是将b前面补齐0
        reverse(b.begin(),b.end());
    
        for(int i = a.size()-1;i >= 0;i -- )			//同样的数据处理过程,不过这里的a和b不需要反转
        {
    		t=t+(a[i]-'0')-(b[i]-'0');
            if(t < 0)
            {
                c+=(t+10)%10+'0';
                t=-1;
            }
            else
            {
                c+=t+'0';
            }
        }
    	return c;
    
    }
    
    
    int main()
    {
        string a,b,c;
        
        cin>>a>>b;
        
        if(cheak(a,b))			//判断a,b大小
            {
            	c=sub(a,b);
            	cout<<c<<endl;
    		}
        else
            {
            	c=sub(b,a);	
            	cout<<'-'<<c<<endl;			//记得带负号
    		}
        
        return 0;
    }
    

    3,2高精度乘除法

这里的代码会有点长,建议会python的同学可以润了

  • 值得注意的一点,我们每次写代码其实都是手动模拟的过程,所以同学们可以先试着直接模拟一边再观看,效果会更好哦。

    我们先讲高精度乘法:说实在的,高精度乘法可以理解为**一个高精度的乘以另一个高精度的每一位数**运算

    那么我们来开始我们的代码之旅吧:

    #include<bits/stdc++.h>
    using namespace std;
    
    string add(string a,string b)		//借用高精度加法,但是这里的a和b不需要翻转了,因为mul函数里面已近翻过一次了
    {
    	string res;
    //	reverse(a.begin(),a.end());
    //	reverse(b.begin(),b.end());
    	if(a.size() < b.size())
    		swap(a,b);
    	int t = 0;
    	for(int i = 0;i < a.size();++i)
    	{
    		t += a[i] - '0';
    		if(i < b.size())  t += b[i] - '0';
    		res += t % 10 + '0';
    		t/= 10;
    	}
    	if(t) 
    		res += t % 10 + '0';
    //	reverse(res.begin(),res.end());
    	return res;
    }
    
    string mul(string a,string b)			//高精度乘
    {
    	string res;
    	reverse(a.begin(),a.end());			//同样,翻转防进位
    	reverse(b.begin(),b.end());
    	for(int i = 0;i < a.size();++i)
    	{
    		string res1;				//这里定义的res1是b的一个位上的数与a数相乘的结果
    		int t = 0;
    		for(int j = 0;j < i;++j)
    			res1 += '0'; 
    		for(int j = 0;j < b.size();++j)
    		{
    			t += (b[j] - '0') * (a[i] - '0'); 
    			res1 += t % 10 + '0';
    			t /= 10;
    		}
    		while(t)
    		{
    			res1 += t % 10 + '0';
    			t /= 10;
    		}
    		res = add(res,res1);			//将res1相加得结果
    	}
    	reverse(res.begin(),res.end());
    	return res;
    }
    
    int main()
    {
    	string a,b,res;
    	
    	cin >> a >> b;
    //	res = add(a,b);
    	res = mul(a,b);
    	cout << res << endl;
    	return 0;
     } 
    

  • 6
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三 七

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值