差分约束系统

差分约束系统

参考博客:

oiwiki
博客园

差分约束系统

定义

差分约束系统是一种特殊的 n n n 元一次不等式组,它包含 n n n 个变量 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn 以及 m m m 个约束条件,每个约束条件是由两个其中的变量做差构成的,形如 x i − x j ≤ c k x_i - x_j \leq c_k xixjck,其中 1 ≤ i , j ≤ n , i ≠ j , 1 ≤ k ≤ m 1 \leq i, j \leq n, i \neq j, 1 \leq k \leq m 1i,jn,i=j,1km 并且 c k c_k ck 是常数(可以是非负数,也可以是负数)。我们要解决的问题是:求一组解 x 1 = a 1 , x 2 = a 2 , … , x n = a n x_1 = a_1, x_2 = a_2, \dots, x_n = a_n x1=a1,x2=a2,,xn=an,使得所有的约束条件得到满足,否则判断出无解。

差分约束系统中的每个约束条件 x i − x j ≤ c k x_i - x_j \leq c_k xixjck 都可以变形成 x i ≤ x j + c k x_i \leq x_j + c_k xixj+ck,这与单源最短路中的三角形不等式 d i s t [ y ] ≤ d i s t [ x ] + z dist[y] \leq dist[x] + z dist[y]dist[x]+z 非常相似。因此,我们可以把每个变量 x i x_i xi 看做图中的一个结点,对于每个约束条件 x i − x j ≤ c k x_i - x_j \leq c_k xixjck,从结点 j j j 向结点 i i i 连一条长度为 c k c_k ck 的有向边。

注意到,如果 { a 1 , a 2 , … , a n } \{a_1, a_2, \dots, a_n\} {a1,a2,,an} 是该差分约束系统的一组解,那么对于任意的常数 d d d { a 1 + d , a 2 + d , … , a n + d } \{a_1 + d, a_2 + d, \dots, a_n + d\} {a1+d,a2+d,,an+d} 显然也是该差分约束系统的一组解,因为这样做差后 d d d 刚好被消掉。

过程

d i s t [ 0 ] = 0 dist[0] = 0 dist[0]=0 并向每一个点连一条权重为 0 0 0 的边,跑单源最短路,若图中存在负环,则给定的差分约束系统无解,否则, x i = d i s t [ i ] x_i = dist[i] xi=dist[i] 为该差分约束系统的一组解。

性质

一般使用 Bellman–Ford 或队列优化的 Bellman–Ford(俗称 SPFA,在某些随机图跑得很快)判断图中是否存在负环,最坏时间复杂度为 O ( n m ) O(nm) O(nm)

求所有变量和的最值

如果要求所有变量和的最值,例如令所有变量都为非负整数,求最小的变量和,我们可以通过跑最长路来实现。对于一个 x i ≥ x j + c k x_i \geq x_j+c_k xixj+ck的式子,变为图上一条从 i i i连向 j j j的边,权值为 c k c_k ck

if(dist[u]<dist[v]+w)
    dist[u]=dist[v]+w;

题目:

【模板】差分约束
小 K 的农场
[SCOI2011] 糖果

模版:

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=100010;
int dist[N];
int n,m;
bool st[N];
vector<array<int,2>> E[N];
bool spfa()
{
	memset(st,false,sizeof st);
	memset(dist,0x3f,sizeof dist);
	dist[0]=0;
	queue<int> q;
	q.push(0);
	st[0]=true;
	int cnt=0;
	while(q.size())
	{
		auto ver=q.front();
		q.pop();
		cnt++;
		if(cnt>=1e7) return false;
		st[ver]=false;
		for(auto [v,w] : E[ver])
		{
			if(dist[v]>dist[ver]+w)
			{
				dist[v]=dist[ver]+w;
				if(!st[v])
				{
					st[v]=true;
				    q.push(v);
				}
				
			}
		}
	}
	return true;
}
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		E[0].push_back({i,0});
	}
	for(int i=1;i<=m;i++)
	{
		int u,v,w;
		cin>>u>>v>>w;
		E[u].push_back({v,w});
	}
	if(!spfa()) cout<<"NO"<<endl;
	else
	{
		for(int i=1;i<=n;i++)
			cout<<-dist[i]<<" \n"[i==n];
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值