看到这道题我一开始的思路是利用dfs深搜来做,但是我学的太烂了,写不出来搜索完一条路径后该怎么返回
于是就用动态规划来做
#include <iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 505;
int dp[N][N],n;
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= i; j++)
{
cin >> dp[i][j];//输入
}
}
for (int i = n-1; i >= 1; i--) //从后面往前面走
{
for (int j = 1; j <= i; j++)//先把最底层的最大值遍历出来
{
dp[i][j] += max(dp[i + 1][j], dp[i + 1][j + 1]);
//根据样例判断d[i][j]只能加上它下面或者右下的数字(至于加哪一个选取它们之间的最大值,这样才能保证d[i][j]始终是走最大的路)
//我们要想知道d【1】【1】的最大值必须先知道其下方走哪边的和最大
//想要知道下方哪一边的最大就得知道下下方哪一边的数字最大,一直循环到最底层
}
cout << dp[1][1];
return 0;
}