每日一题(数字三角形/动态规划)

本文是一篇关于编程解题的文章,作者首先尝试用dfs(深度优先搜索)解决一个问题,但遇到困难。然后转向使用动态规划方法,通过二维数组存储和计算每个位置的最大值,从底部向上遍历,确保找到路径中的最大和。最终代码展示了解决问题的关键部分。
摘要由CSDN通过智能技术生成

看到这道题我一开始的思路是利用dfs深搜来做,但是我学的太烂了,写不出来搜索完一条路径后该怎么返回

于是就用动态规划来做

#include <iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 505;
int dp[N][N],n;
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
 for (int j = 1; j <= i; j++)
{
cin >> dp[i][j];//输入
}
}
for (int i = n-1; i >= 1; i--) //从后面往前面走
{
for (int j = 1; j <= i; j++)//先把最底层的最大值遍历出来
{
dp[i][j] += max(dp[i + 1][j], dp[i + 1][j + 1]);
//根据样例判断d[i][j]只能加上它下面或者右下的数字(至于加哪一个选取它们之间的最大值,这样才能保证d[i][j]始终是走最大的路)
//我们要想知道d【1】【1】的最大值必须先知道其下方走哪边的和最大
//想要知道下方哪一边的最大就得知道下下方哪一边的数字最大,一直循环到最底层
}
cout << dp[1][1];
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值