1.首先拿到有序表
2.根据有序表进行画树
步骤1.先取中间结点作为树的根,通过计算mid = (i + j)/ 2 = 6(向下取整)i = 1, j = 12
步骤2.然后左边剩余的1-5当中继续重复步骤一得到6的左儿子3,紧接着从右边剩余的7-12当中得到数字9作为6的右儿子
步骤3.重复上述操作,得到一个完整的树
3.紧接着将结点补齐
用方框补齐,代表查找失败,叶子结点也需要进行处理
4.写出层数
查找的次数=每一层的层数 x 每一层的结点个数,上图即是1x1 + 2x2 + 3x4 + 4x5 = 37,则查找成功的平均查找长度为37/12,注意:当计算查找失败的平均长度时,层数需要依次减1,即原先第四层变为第三层,然后进行查找失败的次数的计算,即是3x3 + 4x10 = 49(以上算式中“x”前面的为层数,后面为该层的结点数),则对应的查找失败的平均查找长度为49/13
综上答案为A,D