汉诺塔问题的由来:
汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。不论白天黑夜,总有一个僧侣在移动这些圆盘,一次只移动一个,小的圆盘必须在大的上面。僧侣们预言,当所有的圆盘都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而庙宇和众生也都将同归于尽……
条件:
<1>每一次只能移动一个圆盘
<2>大圆盘不能放在小圆盘上,小圆盘可以放在任何比它小的圆盘上
问题分析:
对于实现一个圆盘的移动显然只需要一步就可以完成,对于后面n个圆盘的移动可能就越发烧脑,下面我借鉴了@威化小饼干的三个圆盘的移动演示图
设从左到右依次为a b c 三个柱子,当有四个圆盘时,先将三个圆盘按如图的方式移动到b,再将第四个圆盘移动到c,然后用如图相同的方式将b上的三个圆盘移动到b,就完成了移动依次类推。
因此我们定义一个hanoi函数实现此功能 hanoi(n,a,b,c);n表示圆盘个数,a、b、c分别表示三根柱子。通过反复的调用hanoi就可以实现将n个圆盘移动到c的操作。
函数定义:
定义hanoi函数:
// 定义递归移动函数
void hanoi(int n, int a, int b, int c)
{
if (n == 1)
{
cout << a << "->" << c << endl; // 输出移动路径
sum++; // 用于记录移动次数,需要时最终可以输出
}
else
{
hanoi(n - 1, a, c, b); // 将 n-1 个圆盘从柱子a经过柱子c移动到柱子b上(递归调用)
hanoi(1, a, b, c); // 将最下面的一个圆盘从柱子a直接移动到柱子c上(递归调用)
hanoi(n - 1, b, a, c); // 将 n-1 个圆盘从柱子b经过柱子a移动到柱子c上(递归调用)
}
}
主函数:
#include<iostream>
using namespace std;
void hanoi(int n, int a, int b, int c);// 定义移动函数,
//参数包括圆盘数量n以及三个柱子的编号a、b、c
int sum = 0; // 记录移动步数
int main()
{
while (1)
{
int n;
cout << "请输入要移动的个数: ";
cin >> n;
hanoi(n, 1, 2, 3); // 调用移动函数
cout << "总步骤:" << sum << "步" << endl;
sum = 0; // 重置步数为0
}
return 0;
}
时间复杂度:
假设总的移动步数为 sum,每次移动时 sum 加 1。经过分析可得总的移动步数为 sum = 2 * sum(n-1) + 1。 递归深度为 n,总步数和n的关系为 T(n)=2^n-1,所以时间复杂度为O(2^n)。