物理中的计算方法汇总

蒙特卡洛方法

蒙特卡洛方法是一类基于随机抽样来解决数学、物理和工程问题的计算技术。在物理学中,尤其是在统计物理和凝聚态物理中,蒙特卡洛方法被广泛用于研究系统的热力学性质,通过随机采样大量微观状态来估计系统的宏观量(例如,能量、磁化率、比热等)。这种方法在处理高维度问题和复杂能景(如多体系统的能量计算)时尤其有用,因为传统的数值方法效率低下或难以应用。

分子动力学 (MD)

分子动力学模拟是一种通过求解经典牛顿运动方程来模拟物质中的原子和分子运动的方法。通过MD模拟,可以直接观察到分子水平上的动态过程,如扩散、结晶、融化等。MD的应用范围非常广泛,包括材料科学、生物物理和软物质等领域。分子动力学可以提供关于系统时间演化的详细信息,允许研究者探索温度、压力等宏观参数如何影响微观结构和动态行为。

数值重整化群

(Numerical Renormalization Group,NRG)是一种用于研究量子多体系统的数值技术,特别适用于处理局域量子杂质问题,如Kondo问题、Anderson杂质模型等。它最初由Kenneth G. Wilson在1970年代提出,用于解决金属中的局域磁性杂质问题。从那时起,NRG已经被广泛应用于各种密度泛函理论和强关联电子系统的计算中。

数值重整化群的基本思想是通过逐步积分掉高能度量子态的方式对哈密顿量进行重整化,从而将问题简化为一个包含相对较少自由度的有效模型。

  1. 对数网格化:首先,将电子浴(或连续能谱)离散化为一系列对数间隔的能量点。这种离散化可以在能量空间中以一种保证在零温极限附近具有良好分辨率的方式完成。

  2. 链化哈密顿量:将离散化之后的模型转换成一维链的形式,其中杂质位于链的一端。一维链的每个格点代表一个能量壳,其与杂质的耦合随着距离的增加而递减。

  3. 逐步对角化和重整化:从链的杂质端开始,递增地加入新的格点并对局部哈密顿量进行对角化。每次加入新的格点后,都会得到一个更大系统的哈密顿量,这个哈密顿量比之前的哈密顿量多一个自由度。

  4. 截断高能态:对角化过程会生成大量的能态,为了保持计算的可管理性,通常只保留低能部分的态,这些态被认为与基态和低激发态的物理最为相关。

  5. 迭代和提取物理量:重复上述步骤,逐渐扩展链并重整化新的哈密顿量。在每一步,可以计算不同量子数的基态和第一激发态的物理量,如磁化、热容、磁化率等。

  6. 收敛性和自洽性检查:由于截断过程,NRG计算需要检查随着保留态数的增加结果的收敛性。此外,在DMFT等自洽计算中,需要迭代调整自洽条件至满足特定的精度

密度泛函理论 (DFT)

密度泛函理论是一种计算多电子系统(尤其是原子、分子和凝聚态系统)电子结构的强大方法。DFT将多体问题转化为单电子问题,通过求解Kohn-Sham方程来获得系统的基态性质,如总能量、电子密度分布等。DFT的关键优势在于其相对于体系大小的高效率,使其成为材料科学、化学和物理学中最广泛使用的第一性原理计算方法之一。

粒子模拟 (Particle in-cell, PIC)

粒子模拟方法,特别是粒子模拟 (Particle in-cell, PIC) 方法,是在等离子体物理学中广泛使用的一种计算技术。PIC通过将连续的等离子体离散化为一系列的粒子来模拟其行为,同时在固定的网格上解决电磁场方程。这种方法特别适用于非线性和非平衡问题,能够处理从微观到宏观尺度的等离子体动力学问题。

有限元方法

有限元方法(Finite Element Method,FEM)是一种强大的数值技术,用于求解偏微分方程。通过将复杂的物理系统划分为较小的、简单形状的元素,再在这些元素上建立局部的近似方程,有限元方法能够处理形状复杂、边界条件多样的物理问题。FEM广泛应用于工程学、物理学和生物医学等领域,特别是在结构分析、流体动力学和热传导等问题的求解中。

严格对角化

严格对角化是一种直接求解量子多体系统哈密顿量矩阵本征值和本征态的数值方法。在这种方法中,系统的哈密顿量在一个选定的基集上被表示为一个矩阵,然后通过数值算法找到这个矩阵的特征值(也就是系统可能的能量水平)和对应的特征向量(系统的态)。严格对角化可以提供非常精确的结果,但其主要限制在于系统大小。随着系统的增大,哈密顿矩阵的维度呈指数级增长,这使得只有相对较小的系统才能被处理。

多体微扰理论

多体微扰理论是处理微扰下的量子多体问题的一种方法。基本思想是将系统的哈密顿量分解为两部分:一个是可以精确求解的部分,另一个是作为微扰的部分。通过逐级计算微扰的影响,可以逐步修正系统的能量和态。在微扰较小的情况下,这种方法可以提供非常好的结果。这种方法在量子化学、原子物理和凝聚态物理中都有应用,用于计算原子、分子以及固体中的电子结构和动力学性质。

圈图计算方法

圈图计算是量子场论中一种高级的技术,它涉及到对费曼图中包含一个或多个闭合路径的贡献进行定量分析。这些闭合路径代表了粒子的虚态,即它们不是直接可观测的,但会影响粒子的相互作用。

  1. 费曼规则:首先,根据量子场论的具体形式(如QED、QCD等),将圈图转换为相应的数学表达式。这涉及到为图中的每个顶点、传播子和外部应用费曼规则。

  2. 循环积分:圈图通常会引入环积分(loop integrals),这些是关于虚粒子动量的积分。动量守恒在每个顶点上施加了约束条件,但循环内部的动量并不是固定的,因此需要对这些内部动量进行积分。

  3. 正规化:为了处理这些积分可能出现的发散,通常需要引入正规化程序。常见的正规化方法包括截断正规化(在动量空间引入一个截断Λ)和维数正规化(将积分从4维空间扩展到d维,其中d=4-ε,以控制发散)。

  4. 计算积分:有了正规化方案之后,接下来是计算积分。这可能涉及到复杂的代数计算,特别是对于包含多个环的费曼图。在某些情况下,积分可能可以解析计算;在其他情况下,可能需要数值方法。

  5. 减除发散:即使在正规化之后,理论中的裸参数(如裸质量、裸耦合常数)通常仍然是无限的。重整化过程涉及到从这些无限的裸参数中减去无限大的部分,以得到有限的重整化参数。

  6. 重整化群方程:确定了有限的参数之后,重整化群方程可以用来研究这些参数随能量尺度变化的行为。

  7. 物理预言:最后,使用重整化后的参数,可以对实验可观测量进行计算,并将理论预言与实验数据进行比较。

动力学平均场 (DMFT)

DMFT的核心思想是以一种动力学方式来对强电子关联进行平均处理。在传统的平均场理论中,例如Hartree-Fock近似,人们通过替换电子间实际的相互作用来引入一个平均场,通常这个平均场是静态的,忽略了时间相关的涨落。相比之下,DMFT保留了时间相关的动力学,因此可以捕捉到更丰富的物理效应,如局域涨落。

DMFT的基本假设是将一个复杂的多体问题简化为一个有效的单粒子问题,即所谓的安德森杂质模型(Anderson impurity model),该模型中包含一个被一个动态自洽条件所调节的量子点(或杂质)。通常这个量子点代表了晶格中的一个局域位点,而其余的电子系统则通过一个自洽得到的电子浴来模拟。

DMFT在研究如Hubbard模型和Kondo效应等问题时特别有用,因为它可以捕捉到强关联效应,如金属到绝缘体的Mott转变。DMFT也常被应用于研究高温超导体、磁性材料和其他复杂的电子系统。

关键步骤

  1. 格点到杂质的映射:将原始的多体晶格哈密顿量映射到一个单杂质问题上。

  2. 求解杂质模型:利用各种数值方法(如量子蒙特卡罗方法、精确对角化、奈维尔-萨克斯方法等)来求解这个有效的单粒子问题。

  3. 自洽条件:通过自洽循环调整电子浴的参数,直至达到自洽。在自洽过程中,杂质格林函数的局域性质会被用来更新动态平均场。

尽管DMFT在处理强关联电子系统方面非常强大,但它也有其局限性。主要的限制之一是它忽略了长程空间关联,因为它主要关注局域(单点)属性。为了克服这个限制,DMFT已经被扩展到包括空间关联的版本,例如聚类DMFT(cluster DMFT)或者利用格点量子场论(lattice QFT)方法的动力学聚类近似(dynamical cluster approximation,DCA)。

待更

  • 18
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值