蒙特卡洛方法
蒙特卡洛方法是一类基于随机抽样来解决数学、物理和工程问题的计算技术。在物理学中,尤其是在统计物理和凝聚态物理中,蒙特卡洛方法被广泛用于研究系统的热力学性质,通过随机采样大量微观状态来估计系统的宏观量(例如,能量、磁化率、比热等)。这种方法在处理高维度问题和复杂能景(如多体系统的能量计算)时尤其有用,因为传统的数值方法效率低下或难以应用。
分子动力学 (MD)
分子动力学模拟是一种通过求解经典牛顿运动方程来模拟物质中的原子和分子运动的方法。通过MD模拟,可以直接观察到分子水平上的动态过程,如扩散、结晶、融化等。MD的应用范围非常广泛,包括材料科学、生物物理和软物质等领域。分子动力学可以提供关于系统时间演化的详细信息,允许研究者探索温度、压力等宏观参数如何影响微观结构和动态行为。
数值重整化群
(Numerical Renormalization Group,NRG)是一种用于研究量子多体系统的数值技术,特别适用于处理局域量子杂质问题,如Kondo问题、Anderson杂质模型等。它最初由Kenneth G. Wilson在1970年代提出,用于解决金属中的局域磁性杂质问题。从那时起,NRG已经被广泛应用于各种密度泛函理论和强关联电子系统的计算中。
数值重整化群的基本思想是通过逐步积分掉高能度量子态的方式对哈密顿量进行重整化,从而将问题简化为一个包含相对较少自由度的有效模型。
-
对数网格化:首先,将电子浴(或连续能谱)离散化为一系列对数间隔的能量点。这种离散化可以在能量空间中以一种保证在零温极限附近具有良好分辨率的方式完成。
-
链化哈密顿量:将离散化之后的模型转换成一维链