这项来自斯坦福大学、加州大学伯克利分校、加州大学圣迭戈分校和 Meta 的研究提出了一个新颖的序列建模方法,称为测试时训练(Test-Time Training, TTT)层。TTT 层通过用机器学习模型取代 RNN 的隐藏状态,并使用输入 token 的实际梯度下降来压缩上下文。研究表明,这种方法在性能上可以优于现有的 Transformer 和 Mamba 架构。
TTT 层的设计亮点包括:
1. 替代自注意力机制:TTT 层直接取代了 Transformer 中的自注意力层,采用了线性模型(TTT-Linear)和两层 MLP(TTT-MLP)作为隐藏状态。
2. 线性复杂度架构:通过表达性记忆解锁线性复杂性架构,能够在上下文中训练具有数百万甚至数十亿个 token 的大语言模型(LLM)。
3. 更高效的上下文利用:TTT 层通过更高效的上下文压缩和模型记忆机制,相较于 RNN 层能更好地处理长上下文。
4. 更快的实际运行时间:尽管自注意力机制的复杂度是线性的,研究表明 TTT 层在实际运行时间上更快。
实验结果表明,TTT-Linear 和 TTT-MLP 在较大的上下文长度(如 8k token)下明显优于 Mamba 和 Transformer。具体观察到的优点包括:
- TTT 层在长上下文中的表现优于 Mamba,更具表现力并且更高效。
- 在相同 FLOPs 成本下,TTT-MLP 的困惑度(perplexity)比 TTT-Linear 更低,但由于 FLOPs 的额外成本,TTT-Linear 在效率方面有优势。
研究团队还在 JAX 和 PyTorch 上提供了代码,用于模型训练和测试,可以在以下链接中获取:
- JAX 代码:[https://github.com/test-time-training/ttt-lm-jax](https://github.com/test-time-training/ttt-lm-jax)
- PyTorch 推理代码:[https://github.com/test-time-training/ttt-lm-pytorch](https://github.com/test-time-training/ttt-lm-pytorch)
接下来我将对模型前半部分代码进行解析
-
定义配置类
TTTConfig
-
定义基础模块如
rotate_half
,permute_qk
等 -
定义
RMSNorm
,SwiGluMLP
,RotaryEmbedding
等组件类 -
定义
Conv
卷积层 -
定义
TTTCache
缓存机制
TTTConfig
类
定义了一个用于配置 TTT 模型的类 `TTTConfig`,还包含了一些辅助函数,用于处理查询和键张量的旋转位置嵌入。这些函数和类主要用于模型的配置和预处理步骤,就不详细给出实现了
辅助函数
rotate_half
函数
这个函数将输入张量 x
一分为二,然后交换这两部分的位置,并返回结果。
permute_qk
函数
这个函数对查询(q
)和键(k
)张量进行重新排序,以匹配 JAX 实现中的维度顺序。
undo_permute_qk
函数
def undo_permute_qk(q, k):
bsz, num_head, seq_len, head_dim = q.shape
q = q.reshape(bsz, num_head, seq_len, 2, head_dim // 2).transpose(3, 4).reshape(bsz, num_head, seq_len, head_dim)
k = k.reshape(bsz, num_head, seq_len, 2, head_dim // 2).transpose(3, 4).reshape(bsz, num_head, seq_len, head_dim)
return q, k
这个函数将 permute_qk
函数的操作逆转,恢复原始维度顺序。
apply_rotary_pos_emb
函数
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
这个函数将旋转位置嵌入应用于查询(q
)和键(k
)张量。通过对 cos
和 sin
张量进行适当的扩展,以便它们可以正确地广播到 q
和 k
的维度上。
RMSNorm类:
-
- 主要用于对输入张量进行Root Mean Square Layer Normalization。
- 初始化方法定义了权重和防止除零的小常数。
- 前向传播方法对输入张量进行归一化处理,并乘以权重
SwiGluMLP类:
-
- 这是一个使用SiLU激活函数和Gated Linear Units (GLU)的多层感知机。
- 初始化方法定义了相关的线性层和激活函数。
- 前向传播方法根据配置中的
pretraining_tp
值,对输入张量进行切片和线性变换操作。
import torch
from torch import nn
import torch.nn.functional as F
# 激活函数字典,假设在其他地方定义
ACT2FN = {
"silu": torch.nn.SiLU(),
# 其他激活函数可以在这里添加
}
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""初始化RMSNorm层。
Args:
hidden_size (int): 隐藏层维数。
eps (floa