棋盘问题(多少正方形长方形)

 

#include <stdio.h>
int main()             //坐标法
{
    int n,m,i,j,q,p;
    scanf("%d %d",&n,&m);
    int z=0,c=0;
    for(i=0; i<=n; i++)
    {
        for(j=0; j<=m; j++)  //(i,j)是初始坐标
        {
            for(q=i+1;q<=n;q++)
            {
                for(p=j+1;p<=m;p++)  //(q,p)是后来移动的坐标
                {
                    if((q-i)==(p-j))  //遍历,如果横坐标的差等于纵坐标的差那么就是正方形
                        z++;
                    else
                        c++;

                }
            }

        }

    }
    printf("%d %d",z,c);
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 对于一个 n×m 的棋盘,其中包含的正方形数量为: 1×1 的正方形数量为 (n×m) 个; 2×2 的正方形数量为 (n-1)×(m-1) 个; 3×3 的正方形数量为 (n-2)×(m-2) 个; ... k×k 的正方形数量为 (n-k+1)×(m-k+1) 个。 因此,n×m 的棋盘中包含的正方形数量为: (n×m) + ((n-1)×(m-1)) + ((n-2)×(m-2)) + ... + (1×1) 对于长方形,我们可以枚举其左上角和右下角的位置,即共有 (n-1)×(m-1) 种可能性。因此,n×m 的棋盘中包含的长方形数量为: (n-1)×(m-1) 注意,这里不包括正方形。 ### 回答2: 正方形: 对于 n×m 的棋盘,其最短边长为 1,最长边长为 min(n,m),所以包含的正方形个数为: 1² + 2² + 3² + ... + min(n,m)² 可以用数学公式简化上述求和式: 1² + 2² + 3² + ... + n² = n(n+1)(2n+1)/6 所以包含的正方形个数为: min(n,m)(min(n,m)+1)(2min(n,m)+1)/6 长方形: 首先考虑宽和高都不相同的长方形。对于宽为 i,高为 j 的长方形,其可以从棋盘中的任意 i 个竖行和任意 j 个横行组成,所以包含的长方形个数为: (n-i+1) × (m-j+1) 将宽和高交换,结果一样,所以计算出所有宽高不同的长方形个数,再减去正方形的个数,就是所有长方形的个数。 接下来考虑宽和高相同的长方形,其宽高可以为 1,2,3,...,min(n,m)。对于宽高为 i 的正方形,其可以从棋盘中的任意 i 个竖行和任意 i 个横行组成,所以包含的长方形个数为: (n-i+1) × (m-i+1) 将所有同宽高不同的长方形数加起来,再加上同宽高的正方形数,就是所有长方形的个数。 综上所述,棋盘包含的长方形个数为: 所有宽高不同的长方形个数 - 所有正方形个数 + 所有宽高相同的长方形个数 = ∑[(n-i+1) × (m-j+1)] - ∑[min(n,m)²] + ∑[(n-i+1) × (m-i+1)] ### 回答3: 对于一个n x m的棋盘,我们可以将其分解为一个个小正方形。在这些小正方形中,我们可以找到不同形状的正方形长方形。 先考虑正方形的数量。对于一个n x m的棋盘,我们可以在里面找到不同大小的正方形。例如:当n=1或m=1时,无法构成任何大小的正方形;当n=2或m=2时,只能构成1个2x2的正方形;当n=m=3时,可以构成4个1x1的正方形、1个2x2的正方形和1个3x3的正方形;当n=m=4时,可以构成9个1x1的正方形、4个2x2的正方形和1个3x3的正方形;以此类推。 由此可得,n x m的棋盘中,正方形的数量为: 1² + 2² + 3² + … + min(n, m)² 这是因为当n > m时,最大的正方形边长为m,所以计算到m;当n <= m时,最大的正方形边长为n,所以计算到n。 接下来考虑长方形的数量。我们可以从n x m的棋盘中选择两行和两列,构成一个长方形。由于有n行和m列,因此可以选择的行有n*(n-1)/2种,选择的列有m*(m-1)/2种。所以总共可以构成的长方形数量为: n*(n-1)/2 * m*(m-1)/2 但我们要排除掉正方形的情况。正方形可以由两行和两列组成,所以排除掉的数量为: 1² + 2² + 3² + … + min(n, m)² 因此,n x m的棋盘中,长方形的数量为: n*(n-1)/2 * m*(m-1)/2 - (1² + 2² + 3² + … + min(n, m)²) 综上所述,n x m的棋盘中,正方形的数量为1² + 2² + 3² + … + min(n, m)²,长方形的数量为n*(n-1)/2 * m*(m-1)/2 - (1² + 2² + 3² + … + min(n, m)²)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值