每日一题(3月29日)

文章描述了一个编程竞赛题目,要求计算给定尺寸的棋盘上正方形和长方形的数量。给定一个N×M的棋盘,程序需要输出所有可能的正方形和非正方形长方形的数量。示例给出了当N=2,M=3时的解:正方形8个,长方形10个。代码示例使用C++编写,通过遍历计算得出答案。
摘要由CSDN通过智能技术生成

[NOIP1997 普及组] 棋盘问题

题目描述

设有一个 N × M N \times M N×M方格的棋盘 ( 1 ≤ N ≤ 100 , 1 ≤ M ≤ 100 ) (1≤N≤100,1≤M≤100) (1N100,1M100)

求出该棋盘中包含有多少个正方形、多少个长方形(不包括正方形)。

例如:当 N = 2 , M = 3 N=2, M=3 N=2,M=3时:

正方形的个数有 8 8 8个:即边长为 1 1 1的正方形有 6 6 6个;

边长为 2 2 2的正方形有 2 2 2个。

长方形的个数有 10 10 10个:

2 × 1 2 \times 1 2×1的长方形有 4 4 4

1 × 2 1 \times 2 1×2的长方形有 3 3 3个:

3 × 1 3 \times 1 3×1的长方形有 2 2 2个:

3 × 2 3 \times 2 3×2的长方形有 1 1 1个:

如上例:输入: 2 , 3 2,3 2,3

输出: 8 , 10 8,10 8,10

输入格式

N , M N,M N,M

输出格式

正方形的个数与长方形的个数

样例 #1

样例输入 #1

2 3

样例输出 #1

8 10

提示

【题目来源】

NOIP 1997 普及组第一题

代码

#include<iostream>
using namespace std;
int n,m,zheng,chang,shu;
int main()
{
	cin>>n>>m;
	shu=(1+n)*(1+m)*n*m/4; 
	for(int i=0;i<=min(n,m);i++)
	{
		zheng+=(n-i)*(m-i);
	}
	chang=shu-zheng;
	cout<<zheng<<" "<<chang;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值