LC 1690. 石子游戏 VII

1690. 石子游戏 VII

难度: 中等

题目大意:

石子游戏中,爱丽丝和鲍勃轮流进行自己的回合,爱丽丝先开始

n 块石子排成一排。每个玩家的回合中,可以从行中 移除 最左边的石头或最右边的石头,并获得与该行中剩余石头值之 相等的得分。当没有石头可移除时,得分较高者获胜。

鲍勃发现他总是输掉游戏(可怜的鲍勃,他总是输),所以他决定尽力 减小得分的差值 。爱丽丝的目标是最大限度地 扩大得分的差值

给你一个整数数组 stones ,其中 stones[i] 表示 从左边开始 的第 i 个石头的值,如果爱丽丝和鲍勃都 发挥出最佳水平 ,请返回他们 得分的差值

提示:

  • n == stones.length
  • 2 <= n <= 1000
  • 1 <= stones[i] <= 1000

示例 1:

输入:stones = [5,3,1,4,2]
输出:6
解释:
- 爱丽丝移除 2 ,得分 5 + 3 + 1 + 4 = 13 。游戏情况:爱丽丝 = 13 ,鲍勃 = 0 ,石子 = [5,3,1,4] 。
- 鲍勃移除 5 ,得分 3 + 1 + 4 = 8 。游戏情况:爱丽丝 = 13 ,鲍勃 = 8 ,石子 = [3,1,4] 。
- 爱丽丝移除 3 ,得分 1 + 4 = 5 。游戏情况:爱丽丝 = 18 ,鲍勃 = 8 ,石子 = [1,4] 。
- 鲍勃移除 1 ,得分 4 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [4] 。
- 爱丽丝移除 4 ,得分 0 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [] 。
得分的差值 18 - 12 = 6 。

分析

假设爱丽丝最终的得分是A鲍勃的得分是B,那么二者的差值是A - B,爱丽丝要最大限度扩大这个数字,鲍勃要尽可能减小得分的差值,换句话说就是要B - A要尽可能扩大这个数字,也就是说要尽可能扩大自己的得分减去对手的得分,以示例1为例,假设爱丽丝第一轮移走了第一个石子,那么剩下的就是要从[3, 1, 4, 2]中鲍勃(现在可以看作是先手)的得分减去爱丽丝(现在可以看作是后手)的得分,同理如果移走了最后一个元素,那么剩下的就是[5,3,1,4]中鲍勃(现在可以看作是先手)的得分减去爱丽丝(现在可以看作是后手)的得分,我们发现我们找到了原问题的一个子问题,我们考虑使用动态规划算法,我们首先可以考虑记忆化搜索

定义dfs(i, j)f[i][j]用来存状态,dfs(i, j)表示从ij先手和后手的得分差值的最大值,如果先手移除了i,那么此时得分的差值就是
∑ k = i + 1 k = j s t o n e s [ k ] − d f s ( i + 1 , j ) \sum_{k = i + 1}^{k = j}stones[k] - dfs(i + 1, j) k=i+1k=jstones[k]dfs(i+1,j)
同理得如果移除最后面的石头那么得分的差值就是
∑ k = i k = j − 1 s t o n e s [ k ] − d f s ( i , j − 1 ) \sum_{k = i}^{k = j - 1}stones[k] - dfs(i, j - 1) k=ik=j1stones[k]dfs(i,j1)
二者取一个max即可,一段连续序列的和我们可以使用前缀和算法来处理

记忆化搜索

class Solution {
public:
    int stoneGameVII(vector<int>& stones) {
        int n = stones.size();
        vector<int> sum(n + 1);
        for (int i = 1; i <= n; i ++) {
            sum[i] = sum[i - 1] + stones[i - 1];
        }
        vector<vector<int>> f(n, vector<int>(n, 0));
        function<int(int, int)> dfs = [&](int i, int j) -> int {
            if (i >= j) return 0;
            int& res = f[i][j]; // 注意这里是引用
            if (res) return res;
            res = max(sum[j + 1] - sum[i + 1] - dfs(i + 1, j), sum[j] - sum[i] - dfs(i, j - 1));
            return res;
        };
        return dfs(0, n - 1);
    }
};

时间复杂度: O ( n 2 ) O(n^2) O(n2)

翻译成递推的形式

dfs(i, j) 就表示 f[i][j], 状态转移方程就是f[i][j] = max(sum[j + 1] - sum[i + 1] - f[i + 1][j], sum[j] - sum[i] - f[i][j - 1]);

动态规划(区间dp)

class Solution {
public:
    int stoneGameVII(vector<int>& stones) {
        int n = stones.size();
        vector<int> sum(n + 1);
        partial_sum(stones.begin(), stones.end(), sum.begin() + 1);
        vector<vector<int>> f(n + 1, vector<int>(n + 1, 0));
        for (int len = 2; len <= n; len ++) {
            for (int i = 0; i + len - 1 < n; i ++) {
                int l = i, r = i + len - 1;
                f[l][r] = max(sum[r + 1] - sum[l + 1] - f[l + 1][r], sum[r] - sum[l] - f[l][r - 1]);
            }
        }
        return f[0][n - 1];
    }
};

// 另一个版本
class Solution {
public:
    int stoneGameVII(vector<int>& stones) {
        int n = stones.size();
        vector<int> sum(n + 1);
        partial_sum(stones.begin(), stones.end(), sum.begin() + 1);
        vector<vector<int>> f(n + 1, vector<int>(n + 1, 0));
        for (int i = n - 2; i >= 0; i --) {
            for (int j = i + 1; j < n; j ++) {
                f[i][j] = max(sum[j + 1] - sum[i + 1] - f[i + 1][j], sum[j] - sum[i] - f[i][j - 1]);
            }
        }
        return f[0][n - 1];
    }
};

时间复杂度 O ( n 2 ) O(n^2) O(n2)

partial_sum可以用来求前缀和

结束了

  • 18
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值