2641. 二叉树的堂兄弟节点 II
难度 : 中等
题目:
给你一棵二叉树的根
root
,请你将每个节点的值替换成该节点的所有 堂兄弟节点值的和 。如果两个节点在树中有相同的深度且它们的父节点不同,那么它们互为 堂兄弟 。
请你返回修改值之后,树的根
root
。注意,一个节点的深度指的是从树根节点到这个节点经过的边数。
提示:
- 树中节点数目的范围是
[1, 10^5]
。1 <= Node.val <= 10^4
示例 1:
输入:root = [5,4,9,1,10,null,7]
输出:[0,0,0,7,7,null,11]
解释:上图展示了初始的二叉树和修改每个节点的值之后的二叉树。
- 值为 5 的节点没有堂兄弟,所以值修改为 0 。
- 值为 4 的节点没有堂兄弟,所以值修改为 0 。
- 值为 9 的节点没有堂兄弟,所以值修改为 0 。
- 值为 1 的节点有一个堂兄弟,值为 7 ,所以值修改为 7 。
- 值为 10 的节点有一个堂兄弟,值为 7 ,所以值修改为 7 。
- 值为 7 的节点有两个堂兄弟,值分别为 1 和 10 ,所以值修改为 11 。
分析
根据题目的意思,如果要修改一个节点,那么就要知道他的堂兄弟的和,也可以转化为深度相同的所有节点的和减去所有的兄弟节点,那么我们就可以用bfs来写,dfs容易超时,bfs两次,第一次遍历将下一层的所有节点和下一层的总和求出来,第二次遍历就更新节点的值,因为是二叉树,所以至多就是一个兄弟节点,这样就好办了
BFS
class Solution {
public:
TreeNode *replaceValueInTree(TreeNode *root) {
root->val = 0;
vector<TreeNode*> q = {root};
while (!q.empty()) {
vector<TreeNode*> nxt;
// 计算下一层的节点值之和
int next_level_sum = 0;
for (auto node : q) {
if (node->left) {
nxt.push_back(node->left);
next_level_sum += node->left->val;
}
if (node->right) {
nxt.push_back(node->right);
next_level_sum += node->right->val;
}
}
// 再次遍历,更新下一层的节点值
for (auto node : q) {
int children_sum = (node->left ? node->left->val : 0) +
(node->right ? node->right->val : 0);
if (node->left) node->left->val = next_level_sum - children_sum;
if (node->right) node->right->val = next_level_sum - children_sum;
}
q = move(nxt); // 移动,减少拷贝
}
return root;
}
};
时间复杂度: O ( n ) O(n) O(n)
结束了