Kruskal算法是一种通过边贪心的办法解决最小生成树的一种算法。
(所以首先我们要简单了解一下生成树和最小生成树)
生成树的定义:
一个连通图的生成树是一个极小的连通子图,它包含图中全部的n个顶点,但只有构成一棵树的n-1条边。(其实就是有n个点以及用n-1条边将他们连接起来的无向图就是一个树)
列如上面的3个顶点三条边的完全图可以通过删掉一条边来使它成为一个树,这就是生成树。
而当我们为树的边赋上值时,那对应边权和的值最小的树就是最小生成树。(如下图)
我们可以得到第二个树即为最小生成树。
(接下来我们就可以来看一下比较简单的有关最小生成树的题目)
链接在下面:
http://acm.nefu.edu.cn/problemShow.php?problem_id=209
这个题我们可以用Kruskal加边法处理,即从边值最小(即花费最小的路)开始进行处理
Kruskal加边法原理如下(以该题样例一为例):
因为求所有边权和最小,所以我们按照边权(即这题中的实际花费)进行升序排列,如下图:
接下来依次来遍历每一条边:
1、对于(2,3)这条边,因为2,3不在一个连通块中,所以可以选择这条边,将2所在连通块与3所在连通块连接起来,此时实际花费为0;
2、对于(2,4)这条边,因为2所在连通块与4所在连通块不是一个连通块,所以这条边可以被选择,将2,3,4连接在一个连通块中,此时实际花费为0;
3、 对于(1,3)这条边,因为1所在连通块与3所在连通块不是一个连通块,所以这条边可以被选择,将1,2,,3,4连接在一个连通块中,此时实际花费为2;
(其实到这里我们就可以发现上面的图已经是一个树了,4个点3条边嘛,所以其实这里就可以结束程序打印结果了,不过为了严谨一乃乃,我们继续往下看QAQ)
4、 对于(1,4),(1,2),(3,4)这三条边,由于1与4已经在一个连通块中,所以没有必要选择这条边再来增加花费,同理,1与2的边以及3与4的边也没有选择的必要了,此时的花费依然为2;
值得注意的是这里代码有两个点比较重要:
(1)如何判断测试边的两个端点是否在不同的连通块中;
(2)如何将测试边加入到最小生成树中;
代码如下
int find(int x)//找x地与哪儿个地方相连
{
if(x!=pre[x])
pre[x]=find(pre[x]);
return pre[x];
}
int merge(int x,int y)
{
if(find(x)!=find(y))
pre[find(y)]=find(x);//如果x地与y地未连通(即从x地无法到达y地),则将y地与x地连通(即使得x地可以到达y地,不一定是直接将x地与y地连起来)
}
完整代码如下:
#include<bits/stdc++.h>
using namespace std;
struct sa
{
int x;//路的一端
int y;//路的另一端
int money;//修建该路所需花费,已经建成则花费为0
}a[105];
int pre[105];//储存i地与哪儿个地方相连,如果pre[i]==i,则该地未进行连接
int cmp(const sa&x, const sa&y)//sort的比较函数,按花费从小到大排;
{
return x.money<y.money;
}
int find(int x)//找x地与哪儿个地方相连
{
if(x!=pre[x])
pre[x]=find(pre[x]);
return pre[x];
}
int merge(int x,int y)
{
if(find(x)!=find(y))
pre[find(y)]=find(x);//如果x地与y地未连通(即从x地无法到达y地),则将y地与x地连通(即使得x
地可以到达y地,不一定是直接将x地与y地连起来)
}
int main()
{
int n,flag,sum;
while(cin>>n)
{
sum=0;
for(int i=1;i<=n;i++)
{
pre[i]=i; //刚开始n个点互相独立
}
n=n*(n-1)/2;
for(int i=1;i<=n;i++)
{
cin>>a[i].x>>a[i].y>>a[i].money>>flag;
if(flag==1)//判断是否已经建设
a[i].money=0;
}
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++)
{
if(find(a[i].x)==find(a[i].y))//如果已经连通(从x地可以到达y地),则无需考虑
continue;
merge(a[i].x,a[i].y);
sum+=a[i].money;
}
cout<<sum<<endl;
}
return 0;
}
样例测试结果:
提交结果:
Kruskal算法的时间复杂度主要来源于对边的排序,因此其时间复杂度为O(ElogE),其中E是图中边的个数。该算法适合顶点数较多,边数较少的情况。
总结:如果是稀疏图(边少),选择Kruskal算法。