并查集——畅通工程/修路问题(Kruskal算法)C++

Kruskal算法是一种通过边贪心的办法解决最小生成树的一种算法。

所以​​​​​首先我们要简单了解一下生成树和最小生成树

生成树的定义:

一个连通图的生成树是一个极小的连通子图,它包含图中全部的n个顶点,但只有构成一棵树的n-1条边。(其实就是有n个点以及用n-1条边将他们连接起来的无向图就是一个树

列如上面的3个顶点三条边的完全图可以通过删掉一条边来使它成为一个树,这就是生成树。

而当我们为树的边赋上值时,那对应边权和的值最小的树就是最小生成树。(如下图)

我们可以得到第二个树即为最小生成树。

(接下来我们就可以来看一下比较简单的有关最小生成树的题目)

链接在下面:

http://acm.nefu.edu.cn/problemShow.php?problem_id=209

 

这个题我们可以用Kruskal加边法处理,即从边值最小(即花费最小的路)开始进行处理

Kruskal加边法原理如下(以该题样例一为例):

因为求所有边权和最小,所以我们按照边权(即这题中的实际花费)进行升序排列,如下图:

 接下来依次来遍历每一条边:

1、对于(2,3)这条边,因为2,3不在一个连通块中,所以可以选择这条边,将2所在连通块与3所在连通块连接起来,此时实际花费为0;

 

2、对于(2,4)这条边,因为2所在连通块与4所在连通块不是一个连通块,所以这条边可以被选择,将2,3,4连接在一个连通块中,此时实际花费为0;

 

3、 对于(1,3)这条边,因为1所在连通块与3所在连通块不是一个连通块,所以这条边可以被选择,将1,2,,3,4连接在一个连通块中,此时实际花费为2;

 

(其实到这里我们就可以发现上面的图已经是一个树了,4个点3条边嘛,所以其实这里就可以结束程序打印结果了,不过为了严谨一乃乃,我们继续往下看QAQ)

4、 对于(1,4),(1,2),(3,4)这三条边,由于1与4已经在一个连通块中,所以没有必要选择这条边再来增加花费,同理,1与2的边以及3与4的边也没有选择的必要了,此时的花费依然为2;

   值得注意的是这里代码有两个点比较重要:

(1)如何判断测试边的两个端点是否在不同的连通块中; 

(2)如何将测试边加入到最小生成树中

 代码如下



int find(int x)//找x地与哪儿个地方相连 
{
	if(x!=pre[x])
	pre[x]=find(pre[x]);
	return pre[x];
}


int merge(int x,int y)
{
	if(find(x)!=find(y))
	pre[find(y)]=find(x);//如果x地与y地未连通(即从x地无法到达y地),则将y地与x地连通(即使得x地可以到达y地,不一定是直接将x地与y地连起来) 
}

完整代码如下:

#include<bits/stdc++.h>
using namespace std;

struct sa
{
	int x;//路的一端 
	int y;//路的另一端
	int money;//修建该路所需花费,已经建成则花费为0 
}a[105];
int pre[105];//储存i地与哪儿个地方相连,如果pre[i]==i,则该地未进行连接 
int cmp(const sa&x, const sa&y)//sort的比较函数,按花费从小到大排; 
{
	return x.money<y.money;
}

int find(int x)//找x地与哪儿个地方相连 
{
	if(x!=pre[x])
	pre[x]=find(pre[x]);
	return pre[x];
}

int merge(int x,int y)
{
	if(find(x)!=find(y))
	pre[find(y)]=find(x);//如果x地与y地未连通(即从x地无法到达y地),则将y地与x地连通(即使得x 
                           地可以到达y地,不一定是直接将x地与y地连起来) 
}

int main()
{
	int n,flag,sum;
	while(cin>>n)
	{
		sum=0;
		for(int i=1;i<=n;i++)
		{
			pre[i]=i; //刚开始n个点互相独立 
		}
		n=n*(n-1)/2;
		for(int i=1;i<=n;i++)
		{
			cin>>a[i].x>>a[i].y>>a[i].money>>flag;
			if(flag==1)//判断是否已经建设 
			a[i].money=0;
		} 
		sort(a+1,a+1+n,cmp);
		for(int i=1;i<=n;i++)
		{
			if(find(a[i].x)==find(a[i].y))//如果已经连通(从x地可以到达y地),则无需考虑 
			continue;
			merge(a[i].x,a[i].y);
			sum+=a[i].money;
		}
		cout<<sum<<endl;
	}
	return 0;
}

样例测试结果:

提交结果:

 

 

Kruskal算法的时间复杂度主要来源于对边的排序,因此其时间复杂度为O(ElogE),其中E是图中边的个数。该算法适合顶点数较多,边数较少的情况。

总结:如果是稀疏图(边少),选择Kruskal算法。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值