数学建模
文章平均质量分 71
取名真难.
这个作者很懒,什么都没留下…
展开
-
数学建模 (线性规划 python代码 两种)
线性规划(Linear Programming,LP)是一种数学优化方法,用于解决一类特定类型的最优化问题。该问题的目标是在给定的一组线性约束条件下,找到使某个线性目标函数达到最大或最小的变量值。其中,c是一个n维向量,表示线性目标函数的系数;x是一个n维向量,表示待求解的变量;A是一个m×n的矩阵,表示约束条件的系数;b是一个m维向量,表示约束条件的右侧常数。线性规划广泛应用于经济学、工程学、运筹学等领域,用于解决资源分配、生产计划、货运调度等问题。约束条件:Ax = 0。原创 2024-03-24 16:52:23 · 1314 阅读 · 0 评论 -
数学建模(灰色关联度 python代码 案例)
灰色关联度是一种多指标综合评价方法,用于分析和评价不同指标之间的关联程度。它可以用于确定多个因素之间的相关性,以及它们对某个问题或现象的影响程度。灰色关联度根据数据的相对大小和发展趋势,将指标划分为灰色数列,然后通过计算各指标之间的相对关联度来确定其关联程度。灰色关联度的计算过程包括以下几个步骤:1. 数据标准化:将各指标的原始数据进行标准化处理,将其转化为无量纲的数据。2. 累积生成:将各指标数据按照一定顺序进行累积生成,得到灰色数列。原创 2024-03-21 18:21:38 · 1243 阅读 · 0 评论 -
数学建模(Topsis python代码 案例)
在数学建模中,Topsis方法是一种多准则决策分析方法,用于评估和排序备选方案。它代表了“最佳方案相似性排序技术”。在Topsis方法中,每个备选方案根据一组准则进行评估,并分配权重,以反映它们的相对重要性。然后,该方法根据每个备选方案与理想解和负理想解之间的差异计算两个度量值:到理想解的距离和到负理想解的距离。理想解代表了每个准则的最佳可能值,而负理想解则代表了最差可能值。这些距离度量值使用一个公式计算,考虑了备选方案与这两个参考点之间差异的加权总和。原创 2024-03-21 09:30:48 · 887 阅读 · 0 评论 -
数学建模(熵权法 python代码 例子)
熵权法是一种多属性决策方法,用于确定各个属性在决策中的重要程度。该方法的核心思想是通过计算属性的熵值,来评估属性的信息量和不确定性,进而确定属性的权重。熵是信息论中的概念,表示一个随机变量的不确定性。在决策中,一个属性的熵越大,说明该属性对决策的贡献越大,因为它包含了更多的信息。熵权法通过计算属性的熵,然后将每个属性的熵除以总的熵,得到每个属性的权重。熵权法在多属性决策中具有一定的优势,能够考虑到不同属性的权重,提高决策的准确性和可靠性。原创 2024-03-20 21:48:47 · 1002 阅读 · 1 评论 -
数学建模(层次分析法 python代码 案例)
层次分析法(Analytic Hierarchy Process, AHP)是一种多准则决策分析方法,它将多个准则组织成一个层次结构,通过对各个层次之间的比较和权重的计算,最终得到准则的相对重要性和最优解决方案。在层次结构模型中,各层次之间的关系通过比较矩阵来表示,比较矩阵中的元素表示各个准则或方案之间的相对重要性。在层次分析法中,通过对比较矩阵进行一系列计算,可以得到各个准则和方案的权重,从而评估它们的相对重要性。层次分析法的特点是能够处理多个准则之间的相对重要性,能够量化主观判断,并且易于理解和应用。原创 2024-03-19 23:09:55 · 1393 阅读 · 2 评论