目录
介绍:
熵权法是一种多属性决策方法,用于确定各个属性在决策中的重要程度。该方法的核心思想是通过计算属性的熵值,来评估属性的信息量和不确定性,进而确定属性的权重。
熵是信息论中的概念,表示一个随机变量的不确定性。在决策中,一个属性的熵越大,说明该属性对决策的贡献越大,因为它包含了更多的信息。熵权法通过计算属性的熵,然后将每个属性的熵除以总的熵,得到每个属性的权重。
具体步骤如下:
- 收集决策所涉及的属性数据。
- 计算每个属性的熵值,使用熵的计算公式:熵 = -Σ(p*log2(p)),其中p表示属性的概率。
- 计算所有属性的熵之和,得到总的熵。
- 计算每个属性的权重,使用该属性的熵除以总的熵。
- 最后可以根据属性的权重,进行决策或排序。
熵权法在多属性决策中具有一定的优势,能够考虑到不同属性的权重,提高决策的准确性和可靠性。但是,在实际应用中,需要注意属性数据的准确性和合理性,以及熵的计算方法的选择等问题。
模板:
import numpy as np
# 定义计算熵的函数
def entropy(data):
# 计算每个属性的概率
prob = np.array(data) / np.sum(data)
# 计算熵
entropy = -np.sum(prob * np.log2(prob))
return entropy
# 定义熵权法函数
def entropy_weight(data):
# 计算每个属性的熵
entropies = [entropy(column) for column in data.T]
# 计算总的熵
total_entropy = np.sum(entropies)
# 计算每个属性的权重
weights = [entropy / total_entropy for entropy in entropies]
return weights
# 示例数据
data = np.array([[10, 20, 30, 40], [40, 30, 20, 10]])
# 计算权重
weights = entropy_weight(data)
print("属性权重:", weights)
例子:择偶
极小型指标转化为极大型(正向化):
# 公式:max-x
if ('Negative' in name) == True:
max0 = data_nor[columns_name[i + 1]].max()#取最大值
data_nor[columns_name[i + 1]] = (max0 - data_nor[columns_name[i + 1]]) # 正向化
# print(data_nor[columns_name[i+1]])
中间型指标转为极大型(正向化):
# 中间型指标正向化 公式:M=max{|xi-best|} xi=1-|xi-best|/M
if ('Moderate' in name) == True:
print("输入最佳值:")
max = data_nor[columns_name[i + 1]].max()
min = data_nor[columns_name[i + 1]].min()
best=input()
M=0
for j in data_nor[columns_name[i + 1]]:
if(M<abs(j-i