到底应该怎样理解进制呢?首先得有“一个”的数量概念,然后就是这样的:
把用来表示数量的符号依次排列,例如: q w e r
然后定义最前面的符号为“零”,即“没有”,后面的符号表示的数量依次比前一个符号多“一个”
进制就这样产生了: 例如当我们数数,依次数到 q w e r ,再往后数一个,符号不够用了,那么就写成 wq
并且,我们把这种进制命名为“wq”进制。
感觉怪异吗? 那么请换成我们熟悉的所谓“10”进制看看:
我们的用于表示数量的符号依次是: 0 1 2 3 4 5 6 7 8 9 , 当数到9,再往后数“一个”时,就数到了 10
看这幅漫画(来源于网络),看看能不能理解“进制”的概念?
现在,给定表示数量的符号(这些符号就形成了某种进制),以及该种进制下的两个不超过100位的正整数,请计算两数之和。
输入格式:
第一行给定表示数量的符号,每个符号为一个字符、各不相同且中间没有空格,最多有30个符号且符号的可能范围是:数字0
-9
、大小写字母、!
、@
、#
、$
、%
、^
、&
、*
、(
、)
接下来两行每行给出一个该进制下的不超过100位的正整数
输出格式:
在一行中输出该进制下的两数之和。
输入样例1:
0123456789
123
12
输出样例1:
135
输入样例2:
abcd
bcd
bc
输出样例2:
cab
首先要注意,不管是几进制,都是要有一个字符作为0的,带入到题目就是上面输入的代表进制规则的字符串的第一位
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios_base::sync_with_stdio(0);
int n,m,k,t;
map<char,int>mp;
//用map存储字符串中对应的字符的下标
signed main(){
string s,x,y;
cin >> s ;
//先输入进制表
cin >> x >> y;
//输入两个要相加的"数字"
int jz=s.size();
for(int i=0;i<s.size();i++){
mp[s[i]]=i;
}
int len=max(x.size(),y.size())+2;
//加2补充前导0,方便最高位进位,比如十进制中9+9要进一位变成18
while(x.size()<len){
x=s[0]+x;
}
while(y.size()<len){
y=s[0]+y;
}
//补充前导零,也就也是进制表中的第一位
string c="";
int tmp=0;
for(int i=x.size()-1;i>=0;i--){
if(tmp+mp[x[i]]+mp[y[i]]>=jz){
//看着有点晕,说白了就是调用下标,判断是否大于这个进制的最后一个
//还是举例9+9,下标为9,18>10,所以就进一位
c=s[(int)(tmp+mp[x[i]]+mp[y[i]]-jz)]+c;
//将当前结果加到字符串c上
tmp=1;
//tmp用于判断上一个加法有没有进位
}else{
c=s[(int)(tmp+mp[x[i]]+mp[y[i]])]+c;
tmp=0;
}
}
while(c[0]==s[0]){
c.erase(0,1);
}
//如果还有前导零就删掉
cout << c << endl;
//输出答案
return 0;
}