给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N
(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
1 2 3 4 5 6 7
4 1 3 2 6 5 7
输出样例:
4 6 1 7 5 3 2
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int n,m,t,k;
//二叉树指针建树的精髓
struct node{
int val;
node* lt;
node* rt;
};
int mid[35],pre[35];
//储存中序和前序的结果
node* build(int mid1[],int pre1[],int len){
if(len<=0)return NULL;
//如果没了就return,因为是node*类型所以可以返回一个空值
int idx=0;
for(int i=0;i<len;i++){
if(mid1[i]==pre1[0]){
idx=i;
break;
}
}
//前序的第一位就是二叉树的根,而在中序中,二叉树的左树和右树分在根的两边所以要对照两个数组来锁定树的左右指针
node* root = new node();
//创建一个空指针
root -> val=pre1[0];
//赋值
root -> lt=build(mid1,pre1+1,idx);
root -> rt=build(mid1+idx+1,pre1+1+idx,len-idx-1);
//递归建树,意思是区分左右树分别建立到左右,可以参透一下
return root;
//必须return,不然会段错误
}
void bfs(node* root){
vector<int>g;
queue<node*>q;
q.push(root);
while(!q.empty()){
node* tmp=q.front();
//遍历
q.pop();
g.push_back(tmp->val);
if (tmp->rt) q.push(tmp->rt);
if (tmp->lt) q.push(tmp->lt);
}
for(int i=0;i<g.size();i++){
if(i!=0)cout << " ";
cout << g[i];
}
cout << endl;
}
signed main(){
cin >> n;
for (int i = 0; i < n; i++) cin >> mid[i];
for (int i = 0; i < n; i++) cin >> pre[i];
node* root = build(mid, pre, n);
bfs(root);
//一个root相当于整个二叉树
return 0;
}