目录
一、什么是工作流
工作流(Workflow)是指为完成某一特定目标而设计的一系列逻辑化、结构化的步骤或任务流程。简单来说,它是将复杂的任务拆解为多个可执行、可管理的环节,并通过明确的规则、条件和顺序将这些环节串联起来,最终实现高效、自动化的业务或操作目标。
(一)工作流的核心要素
工作流的本质是“流程设计”,其核心包含以下几个关键要素:
- 步骤(Steps):任务被分解为具体的操作单元,例如数据输入、内容审核、结果反馈等。
- 规则(Rules):定义每个步骤的执行条件、跳转逻辑(如“如果满足条件A,则进入步骤B”)。
- 角色(Roles):明确不同环节的参与者或执行者(人或自动化程序)。
- 自动化(Automation):通过工具或代码减少人工干预,提升效率和一致性。
例如,一个电商客服的工作流可能包含:订单查询→问题分类→退款审核→反馈用户,每个步骤由不同系统或角色协作完成。
(二)工作流的应用场景
工作流广泛适用于需要多步骤协作的场景:
- 企业流程:如财务报销审批、合同签署流程。
- 内容生产:从选题、撰写、审核到发布的完整链条。
- AI与大模型结合:通过串联提示词(Prompt)、数据清洗、结果校验等步骤,提升大模型输出的准确性和可控性。
二、为什么在大模型有提示词的情况下依然需要工作流?
尽管大模型(如DeepSeek、Claude等)能够通过精心设计的提示词(Prompt)直接生成文本、代码或解决方案,但在实际业务场景中,仅依赖单一提示词往往难以满足复杂需求。工作流的价值在于通过结构化、多步骤的协作机制,弥补大模型在长链路任务处理、结果可控性和多角色协同上的不足。
事实上,提示词(Prompt)和工作流(Workflow)在AI应用中是互补关系而非替代关系,其核心差异在于“系统化能力”的构建。
(一)复杂任务的拆解与分步执行
大模型的提示词擅长处理单点任务(例如生成一段文案、回答一个问题),但面对需要多步骤、多条件判断的复杂任务时,单一提示词容易陷入“一步到位”的误区,导致结果不可控。
示例场景:
假设需要生成一份完整的市场分析报告,仅靠一个提示词可能输出笼统或错误的信息。而通过工作流,可以将其拆解为:
- 数据收集:调用搜索API获取实时市场数据;
- 数据清洗:过滤无效或重复信息;
- 结构化分析:分模块生成行业趋势、竞品对比、用户画像;
- 结果校验:通过规则引擎或人工审核修正逻辑错误。
工作流通过分步骤执行,确保每个环节的输出质量,最终整合为可靠的结果。
(二)动态调整与条件分支控制
大模型的输出具有随机性,而实际业务中往往需要根据中间结果动态调整后续步骤。提示词难以实现灵活的“条件判断”和“状态跟踪”,而工作流可通过规则引擎实现分支逻辑。
示例场景:
在客服场景中,用户提问可能涉及退款、售后、产品咨询等多种类型。通过工作流可以设计:
- 意图识别:用大模型判断用户问题类型;
- 分支跳转:
如果是退款请求→验证订单状态→调用退款接口→生成回复;
如果是产品咨询→匹配知识库→提取答案→生成回复;
这种动态路由能力是单一提示词无法实现的。
(三)多工具与多模型的协同
复杂任务通常需要结合多种工具(如数据库、API)或多模型协作(例如用DeepSeek生成文案、Stable Diffusion生成配图)。工作流可以整合不同模块,而提示词只能依赖单一模型的孤立输出。
示例场景:
设计一个社交媒体自动运营流程:
- 内容生成:用DeepSeek撰写文案;
- 图片生成:调用Midjourney生成配图;
- 合规审核:通过审核模型过滤敏感内容;
- 定时发布:调用平台API发布内容。
工作流将这些环节串联,实现端到端的自动化。
(四)结果稳定性与错误兜底
大模型的输出可能存在偏差或幻觉(Hallucination),仅依赖提示词时需反复调试且缺乏容错机制。工作流可通过以下方式提升稳定性:
- 校验规则:例如用正则表达式检查生成内容是否符合格式;
- 重试机制:当模型输出不符合预期时,自动调整提示词重新生成;
- 人工干预节点:在关键环节(如法律文书生成)插入人工审核。
(五)人机协作与角色分工
在需要多人协作的场景中,工作流可以明确不同环节的参与者(如AI自动处理、人工审核、外部系统执行),而提示词仅能完成“单次交互”。
示例场景:
企业内部的内容发布流程:
AI初稿生成→编辑修改→法务审核→负责人确认→发布。
工作流通过角色分配和状态跟踪,确保流程透明且可追溯。
提示词是“让AI理解某个具体问题”,而工作流是“让企业级业务在AI驱动下可靠运转”。正如螺丝钉(Prompt)和自动化生产线(Workflow)的关系——单个零件的精密度再高,也需要系统设计才能实现规模化价值输出。
三、如何创建一个简单的工作流(Coze)
Coze是一款专注于大模型应用开发的低代码平台,通过可视化界面快速搭建复杂的工作流。以下将以一个“自动化内容生成与审核流程”为例,分步骤介绍如何用 Coze创建简单的工作流。
- 注册与进入工作流设计界面
- 注册/登录:访问 Coze 官网,注册账号并登录。
- 创建新项目:在控制台点击「新建工作流」,输入名称(如“博客内容生成与审核”)。
- 界面概览:
画布区域:拖拽节点构建流程图。
节点库:提供大模型调用、API 接口、条件判断、数据存储等组件。
参数配置面板:设置节点输入输出、触发条件等。
- 定义工作流目标与核心步骤
目标:自动生成一篇博客草稿,经过敏感词审核后发布到指定平台。
拆解步骤:
- 触发条件:用户输入博客主题关键词。
- 生成标题:调用大模型生成多个标题选项。
- 生成正文:根据选定标题生成完整内容。
- 敏感词审核:调用审核接口过滤违规内容。
- 结果输出:通过审核则发布到网站,否则通知人工处理。
- 搭建工作流(以下为文字版操作指南):
1.添加触发节点:
从节点库拖拽「用户输入」节点到画布。
配置输入参数:
字段名称:`blog_topic`
描述:请输入博客主题关键词(如“AI 绘画趋势”)。
2.调用大模型生成标题
拖拽「大模型调用」节点,连接至触发节点。
配置模型参数:
选择模型(如 GPT-4)。
输入提示词:根据以下主题生成5个博客标题,要求简洁且有吸引力。主题:{{blog_topic}}
输出变量:`titles`(存储生成的标题列表)。
3.人工选择标题(模拟交互)
拖拽「人工干预」节点,连接至标题生成节点。
配置参数:
提示信息:请从以下标题中选择一个:{{titles}}
输出变量:`selected_title`(用户选择的标题)。
4. 生成正文内容
拖拽第二个「大模型调用」节点,连接至人工选择节点。
提示词配置:
根据标题撰写一篇1500字的博客正文,需包含案例和数据分析。标题:{{selected_title}}
输出变量:`blog_content`。
5. 敏感词审核
拖拽「API调用」节点,连接至正文生成节点。
配置审核接口(示例):
API 地址:填写第三方审核服务 URL(如阿里云内容安全)。
输入参数: `{"text": {{blog_content}}}`
输出判断:若返回 `status=pass` 则继续,否则跳转至错误处理。
6. 结果分支与发布
拖拽「条件判断」节点,连接审核节点。
条件1:`审核通过` → 连接「发布到网站」节点(配置网站 API)。
条件2:`审核不通过` → 连接「通知人工」节点(如发送邮件或 Slack 消息)。
- 测试与调试
- 运行测试:点击「测试运行」,输入博客主题关键词(如“AI 绘画”),观察流程是否按预期执行。
- 查看日志:在调试面板检查每个节点的输入输出,定位错误(如 API 调用失败或提示词歧义)。
- 优化提示词:若生成内容质量不佳,返回大模型节点调整提示词细节(如增加示例)。
- 发布与集成
- 部署工作流:点击「发布」,生成唯一 API 接口或绑定到聊天机器人。
- 外部调用:通过 Webhook 或 SDK 将工作流集成到现有系统(如 CMS 或客服平台)。
- 高级功能扩展
- 循环与批处理:例如批量生成100篇内容并自动排重。
- 多模型协作:用DeepSeek生成文案,Claude 校验逻辑。
- 数据库集成:将审核通过的内容存储到 MySQL 或 Airtable。
四、Coze 与 Dify 的区别与性能分析
Coze 和 Dify 作为当前主流的 AI 应用开发平台,均基于大语言模型(LLM)构建,支持工作流编排与知识库管理,但在功能定位、技术特性及适用场景上存在显著差异。
(一)功能定位与用户群体
- Coze
定位:字节跳动推出的 AI 聊天机器人开发平台,强调快速搭建和社交化部署,尤其适合 C 端用户和高频对话场景(如社交媒体客服、互动营销等)。
用户群体:非技术用户、中小企业和需要快速上线的轻量级应用开发者。
核心优势:插件生态丰富、操作界面直观、对话体验优化。
- Dify
定位:开源的大模型应用开发平台,注重企业级复杂业务逻辑的深度编排,支持多用户协作和国际化模型接入。
用户群体:技术开发者、企业 IT 团队及需要私有化部署的用户。
核心优势:模型接入灵活、工作流编排功能全面、支持多环境部署。
(二)核心功能对比
- 模型接入能力
Coze:国内版主要支持豆包大模型及智谱、通义千问等国内模型,海外版兼容更多模型但灵活性有限。
Dify:支持 OneAPI、Ollama 等多种模型接口,可直接在界面配置全球主流模型(如 GPT-4、Claude),适合需要多模型协作的场景。
- 工作流编排
Coze:
设计逻辑:节点操作灵活,支持先拉取所有节点再连线,适合快速搭建简单流程;
功能特性:嵌套工作流、批处理能力、代码节点编辑友好。
局限性:节点类型较少,复杂逻辑需依赖外部调用。
Dify:
设计逻辑:严格按顺序添加节点,适合结构化设计;
功能特性:支持条件分支、多路召回检索、代码执行节点;
高级能力:提供完整的日志追踪和调用链路分析。
- 应用发布与集成
Coze:
发布场景:对字节系平台(如抖音、飞书)友好,支持一键发布至社交媒体;
API 支持:较弱,跨平台集成需额外开发。
Dify:
发布场景:支持多平台API调用,适合企业级系统集成;
数据统计:提供详细的Token消耗、用户满意度等指标。
- 知识库管理
Coze:支持网页、飞书数据同步及表格预览,但文本切分与索引灵活性较低。
Dify:提供分段规则自定义、多模式索引(如高质量/经济模式),适合复杂知识管理需求。