P2895 [USACO08FEB] Meteor Shower S
题目描述
贝茜听说一场特别的流星雨即将到来:这些流星会撞向地球,并摧毁它们所撞击的任何东西。她为自己的安全感到焦虑,发誓要找到一个安全的地方(一个永远不会被流星摧毁的地方)。
如果将牧场放入一个直角坐标系中,贝茜现在的位置是原点,并且,贝茜不能踏上一块被流星砸过的土地。
根据预报,一共有 M M M 颗流星 ( 1 ≤ M ≤ 50 , 000 ) (1\leq M\leq 50,000) (1≤M≤50,000) 会坠落在农场上,其中第 i i i 颗流星会在时刻 T i T_i Ti( 0 ≤ T i ≤ 1000 0 \leq T _ i \leq 1000 0≤Ti≤1000)砸在坐标为 ( X i , Y i ) ( 0 ≤ X i ≤ 300 (X_i,Y_i)(0\leq X_i\leq 300 (Xi,Yi)(0≤Xi≤300, 0 ≤ Y i ≤ 300 ) 0\leq Y_i\leq 300) 0≤Yi≤300) 的格子里。流星的力量会将它所在的格子,以及周围 4 4 4 个相邻的格子都化为焦土,当然贝茜也无法再在这些格子上行走。
贝茜在时刻 0 0 0 开始行动,她只能在会在横纵坐标 X , Y ≥ 0 X,Y\ge 0 X,Y≥0 的区域中,平行于坐标轴行动,每 1 1 1 个时刻中,她能移动到相邻的(一般是 4 4 4 个)格子中的任意一个,当然目标格子要没有被烧焦才行。如果一个格子在时刻 t t t 被流星撞击或烧焦,那么贝茜只能在 t t t 之前的时刻在这个格子里出现。 贝茜一开始在 ( 0 , 0 ) (0,0) (0,0)。
请你计算一下,贝茜最少需要多少时间才能到达一个安全的格子。如果不可能到达输出 − 1 −1 −1。
输入格式
共 M + 1 M+1 M+1 行,第 1 1 1 行输入一个整数 M M M,接下来的 M M M 行每行输入三个整数分别为 X i , Y i , T i X_i, Y_i, T_i Xi,Yi,Ti。
输出格式
贝茜到达安全地点所需的最短时间,如果不可能,则为 − 1 -1 −1。
输入输出样例 #1
输入 #1
4
0 0 2
2 1 2
1 1 2
0 3 5
输出 #1
5
Solution
这题在做的过程中犯了很多错误,首先就是数据结构,应该要想到用一个数组来预处理出每个点的最晚安全时间,也就是爆炸时间,永远安全的点则等于-1。然后就是没有注意dx,dy的边界情况,dx和dy不能小于0,再就是在判断下一个点是否能访问的时候出现了错误,比较safe和当前时间搞反了。
#include<iostream>
#include<queue>
using namespace std;
int n, safe[400][400], vis[400][400], ans[400][400];
int dir_x[] = { 0,-1,1,0,0 };
int dir_y[] = { 0,0,0,-1,1 };
int main() {
cin >> n;
//预处理safe数组
for (int i = 0; i < 400; ++i) {
for (int j = 0; j < 400; ++j) {
safe[i][j] = -1;
}
}
for (int i = 1; i <= n; ++i) {
int sx, sy, st;
cin >> sx >> sy >> st;
for (int j = 0; j <= 4; ++j) {
int dx = sx + dir_x[j], dy = sy + dir_y[j];
//记录较早的那个爆炸时间
if (dx >= 0 && dy >= 0 && (safe[dx][dy] == -1 || safe[dx][dy] > st)) safe[dx][dy] = st;
}
}
//两个队列分别记录节点的x和y值
queue<int>q1;
queue<int>q2;
q1.push(0), q2.push(0);
vis[0][0] = 1;
int cnt = 0;
while (!q1.empty()) {
int level_size = q1.size();
for (int t = 0; t < level_size; ++t) {
int x = q1.front(), y = q2.front();
q1.pop(), q2.pop();
for (int i = 1; i <= 4; ++i) {
//注意判断边界,dx和dy不能出界,否则答案会错误
int dx = x + dir_x[i], dy = y + dir_y[i];
if (dx >= 0 && dy >= 0 && safe[dx][dy] == -1) { cout << cnt + 1; return 0; }
if (dx >= 0 && dy >= 0 && !vis[dx][dy] && (safe[dx][dy] > cnt + 1 )) {
q1.push(dx), q2.push(dy);
vis[dx][dy] = 1;
}
}
}
cnt++;
}
cout << -1;
return 0;
}
276

被折叠的 条评论
为什么被折叠?



