
本文数据结构讲解参考书目:
通过网盘分享的文件:数据结构 C语言版.pdf
链接: https://pan.baidu.com/s/159y_QTbXqpMhNCNP_Fls9g?pwd=ze8e 提取码: ze8e
数据结构基础讲解(七)——数组和广义表专项练习-CSDN博客
个人主页:樱娆π-CSDN博客
目录
由于这节内容较多,我将分两节来讲解
树
树的定义
树(Tree)是n(n>=0)个结点的有限集,它或为空树(n= 0); 或为非空树,对千非空树T
(1)有且仅有一个称之为根的结点;
(2)除根结点以外的其余结点可分为 m(m>0)个互不相交的有限集 Ti , T2 , …,几,其中每 一个集合本身又是一棵树,并且称为根的子树(SubTree)。
树的结构定义是一个递归的定义,即在树的定义中又用到树的定义,它道出了树的固有特性
树的基本术语
(1) 结点:树中的一个独立单元。包含一个数据元素及若于指向其子树的分支.
(2)结点的度:结点拥有的子树数称为结点的度。
(3)树的度:树的度是树内各结点度的最大值。
(4) 叶子: 度为 0 的结点称为叶子或终端结点。
(5) 非终端结点:度不为 0 的结点称为非终端结点或分支结点。除根结点之外,非终端结点 也称为内部结点。
(6)双亲和孩子:结点的子树的根称为该结点的孩子,相应地,该结点称为孩子的双亲。
(7) 兄弟:同一个双亲的孩子之间互称兄弟。
(8) 祖先:从根到该结点所经分支上的所有结点。
(9) 子孙:以某结点为根的子树中的任一结点都称为该结点的子孙。
(10) 层次:结点的层次从根开始定义起,根为 第一层,根的孩子为第二层。树中任一结点的 层次等千其双亲结点的层次加 1。
(11)堂兄弟:双亲在同 一层的结点互为堂兄弟
(12)树的深度:树中结点的最大层次称为树的深度或高度。
(13)有序树和无序树:如果将树中结点的各子树看成从左至右是有次序的(即不能互换), 则称该树为有序树,否则称为无序树。在有序树中最左边的子树的根称为第一个孩子,最右边的 称为最后一个孩子
(14)森林:是 m (m>0)棵互不相交的树的集合。对树中每个结点而言,其子树的集合即 为森林。由此,也可以用森林和树相互递归的定义来描述树
树的基本操作
| 基本操作 | 初始条件 | 操作结果 |
| InitTree(&T) | / | 构造空树T |
| DestroyTree (&T) | 树T存在 | 销毁树T |
| CreateTree(&T,definition) | definition 给出树 T 的定义 | 按 definition 构造树 T |

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



