scikit-learn的安装与KNN算法

一.scikit-learn的安装

1.首先安装anaconda环境

直接前往anaconda官网进行安装

2.使用Anaconda Powershell Prompt (anaconda3)创建虚拟环境

conda create -n (环境名) python=(版本号)

3.进入创建的环境中

conda activate (环境名)

4.安装scikit-learn

 conda install scikit-learn

二.在pycharm中进行配置

1.打开设置

2.找到解释器设置

3.找到添加本地解释器

4.选择之前创建的虚拟环境

三.KNN算法概念流程

1.KNN算法概念一个样本最相似的 k 个样本中的大多数属于某一个类别,则该样本也属于这个类别 
2.KNN分类流程
1.计算未知样本到每一个训练样本的距离
2.将训练样本根据距离大小升序排列
3.取出距离最近的 K 个训练样本
4.进行多数表决,统计 K 个样本中哪个类别的样本个数最多
5.将未知的样本归属到出现次数最多的类别
3.KNN回归流程
1.计算未知样本到每一个训练样本的距离
2.将训练样本根据距离大小升序排列
3.取出距离最近的 K 个训练样本
4.把这个 K 个样本的目标值计算其平均值
5. 作为将未知的样本预测的值
4.K值的选择
• K 值过小:过拟合
• K 值过大:欠拟合

5.k值的验证:交叉验证,网格搜索。

四.分类与回归的代码实现

from sklearn.neighbors import KNeighborsClassifier as kc
from sklearn.neighbors import KNeighborsRegressor as kr
# 分类
def demo01():
    # 导数据
    x=[[0],[1],[2],[3]]
    y=[0,0,1,1]
    # 实例化对象
    model=kc(n_neighbors=1)
    # 训练
    model.fit(x,y)
    # 预测
    mypre=model.predict([[4]])
    print(f'预测值:{mypre}')
# 回归
def demo02():
    x=[[0,0,1],
       [1,1,0],
       [3,10,10],
       [4,11,12]]
    y=[0.1,0.2,0.3,0.4]
    model=kr(n_neighbors=2)
    model.fit(x,y)
    mypre=model.predict([[3,11,10]])
    print(f'预测值:{mypre}')
demo01()
demo02()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值