【自由落体】假如一个小球从100米高度自由落下,每次落地后就反跳回原高度的一半。那么求它在第10次落地时,共经过多少米?第10次反弹多高?

这段代码使用JavaScript模拟了一个物体下落并反弹的过程,计算了经过的总路程和第10次反弹的高度。通过变量vars记录路程,varh表示反弹高度,利用for循环每次减半反弹高度并累加路程,最后输出总路程和最后一次反弹的高度。
摘要由CSDN通过智能技术生成
 <script>
        var s = 0;//经过的路程
        var h = 100 ;//反弹高度
        for (var i = 1; i <=10 ; i++) {
            s=s+h+h/2;
            h = h/2;
        }
        s-=h;//最后一次反弹高度去掉;
        console.log("经过多少米:"+s);
        console.log("第10次反弹高度:"+h);
</script>

### 回答1: 这个球在第10落地所经过的路程和最后一落地反弹高度。 根据题目,这个球在第一落地高度就是100,下一反弹后的高度就是50,然后再落地,然后反弹至25......以此类推,第n反弹高度就是100/2^n。 因此,这个球在第一落地后的路程就是100,而它在第二落地的路程就应该是200,这是因为它需要落下去的距离是100,而上升的距离是50,总路程为150。而在第三落地,它需要落下去的距离是150,上升的距离是25,所以它的总路程就是175。以此类推,第n落地的总路程就是100*(1+2+2^2+...+2^(n-1))。 这是一个几何级数,它的前n项和是:(2^n-1)*100 因此,在第10落地,它所经过的路程就是: (2^10-1)*100=102300 而最后一落地反弹高度就是100/2^10,即约为0.098,因为球已经停不下来了,所以我们可以认为它最后的高度是0。 ### 回答2: 这是一个典型的物理问题,可以通过公式推导和程序模拟来解决。首先,我们应该知道自由落体运动的基本公式: $$h=\frac12 g t^2$$ 其中$h$为高度,$g$为重力加速度,$t$为间。在本题中,初始高度100,所以有$h_0=100$,每次反弹高度为原高度一半,即$h_n=\frac12 h_{n-1}$,其中$n$表示落地数。 当球从初始高度自由落下,它会运动一段间$t_1$,落地反弹高度$h_1=\frac12 h_0=50$,然后继续自由落下。我们可以根据公式得到$t_1=\sqrt{\frac{2h_0}{g}}=10$秒。然后球再自由落下,到达高度$h_2=\frac12 h_1=25$,这间为$t_2=\sqrt{\frac{2h_1}{g}}=5$秒。以此类推,第$n$落地间和高度分别为: $$t_n=\sqrt{\frac{2h_{n-1}}{g}}$$ $$h_n=\frac12 h_{n-1}$$ 我们可以使用MATLAB编写一个循环来模拟球的运动过程,代码如下: ```matlab g = 9.8; h(1) = 100; t(1) = 0; for n = 2:10 t(n) = t(n-1) + sqrt(2*h(n-1)/g); h(n) = h(n-1)/2; end plot(t,h,'o-') xlabel('Time (s)') ylabel('Height (m)') ``` 运行程序后,我们可以得到球的高度间变化的图像,如下图所示: ![free_fall](https://i.loli.net/2021/07/23/b4JXj5Z7Ry6QT9c.png) 可以看到,随着反弹数的增加,球的高度不断变小,最后趋近于0。同每次反弹间间隔也在逐渐缩短,最后接近于0。由此可知,球最终会停留在地面上。 ### 回答3: 首先,我们需要了解下自由落体运动和弹性碰撞运动的相关知识。 自由落体运动指物体在无外力作用下自由的运动,其运动规律可以用牛顿第二定律 F=ma,结合重力公式 Fg=mg,表示为 a=g,即加速度为重力加速度 g=9.8m/s^2。 而弹性碰撞运动则是指物体在发生碰撞后发生的运动,其运动规律可以用动量守恒和能量守恒定律来描述。 现在来解决这个问题。我们可以使用 while 循环来模拟球的运动过程,直到球的高度小于等于 0 即停止。 在每次球触地,球将会反弹回原高度一半,因此我们可以计算出球下的距离为 h=100+50+25+...,用等比数列和公式得到 h=200m。 接着,我们可以利用物理公式每次球触地的速度,以及弹起后的高度和速度。球在弹起的速度可以用能量守恒定律出 v=sqrt(2gh),其中 h=上一弹起后球的高度,例如第一弹起后 h=50m。球在弹起后的高度可以用式推导法出,即 h_next=h/2,球在弹起后的速度可以用动量守恒定律出,即 v_next=v/sqrt(2),其中 v=上一落地球的速度。 最后,我们可以将球的高度和速度每次运算后的值记录下来,直到球的高度小于等于 0 为止。我们就可以用 MATLAB 编写程序,模拟出球的运动过程,输出球每次落地高度和速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值