- 博客(7)
- 收藏
- 关注
原创 七、PCA实验
主成分分析(PCA)是一种统计方法,它通过正交变换将可能存在相关性的变量转换为一组线性不相关的变量。主成分分析(PCA)提供了一种减少数据集维度的有效方法,同时尽量减少原有信息的损失,揭示隐藏在多变量数据背后的简单结构。
2024-06-22 13:12:47 1547 1
原创 六、支持向量机实验
支持向量机(SVM)是机器学习中的一种重要算法,它主要用于解决二分类问题。SVM的基本模型是定义在特征空间上的间隔最大的线性分类器。其核心思想是通过寻找一个超平面,使得不同类别的数据之间的间隔最大化,从而能够有效地区分不同的数据类别。在SVM中,那些距离最优决策面最近的几个样本的位置决定的虚线的位置所穿过的样本点,被称为"支持向量"。这些支持向量是SVM中的关键元素,它们决定了决策面的最优位置。
2024-06-09 00:39:53 838
原创 3.决策树实验
决策树虽然易于理解和解释,但也有局限性,比如容易过拟合、对噪声敏感等,可以更好地理解决策树模型的优缺点,不仅加深了对决策树算法的理解,还实际应用机器学习算法的能力,为解决实际问题奠定了基础。树中每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,而每个叶节点则对应从根节点到该叶节点所经历的路径所表示的对象的值。4.剪枝:构建完整的决策树后,为了避免过拟合,可以进行剪枝操作。剪枝可以通过预剪枝或后剪枝实现,其中预剪枝在构建树的过程中进行剪枝,而后剪枝在构建完整树之后修剪无关的节点。
2024-04-30 12:50:20 312 1
原创 2.KNN算法实验和分类模型评估
通过本次实验,我们学习了KNN算法的基本原理和实现方法,并使用该算法对水果数据集进行了分类预测。实验结果表明,KNN算法在水果数据集上具有较高的准确率,可以有效地对水果进行分类。此外,我们还分析了不同K值对分类结果的影响,并绘制了散点图展示了水果数据集的特征。
2024-04-02 12:48:53 204
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人