给你一棵 n
个节点的 无向 树,节点从 0
到 n - 1
编号。树以长度为 n - 1
下标从 0 开始的二维整数数组 edges
的形式给你,其中 edges[i] = [ui, vi]
表示树中节点 ui
和 vi
之间有一条边。同时给你一个 正 整数 k
和一个长度为 n
下标从 0 开始的 非负 整数数组 nums
,其中 nums[i]
表示节点 i
的 价值 。
Alice 想 最大化 树中所有节点价值之和。为了实现这一目标,Alice 可以执行以下操作 任意 次(包括 0 次):
- 选择连接节点
u
和v
的边[u, v]
,并将它们的值更新为:nums[u] = nums[u] XOR k
nums[v] = nums[v] XOR k
请你返回 Alice 通过执行以上操作 任意次 后,可以得到所有节点 价值之和 的 最大值 。
示例 1:
输入:nums = [1,2,1], k = 3, edges = [[0,1],[0,2]] 输出:6 解释:Alice 可以通过一次操作得到最大价值和 6 : - 选择边 [0,2] 。nums[0] 和 nums[2] 都变为:1 XOR 3 = 2 ,数组 nums 变为:[1,2,1] -> [2,2,2] 。 所有节点价值之和为 2 + 2 + 2 = 6 。 6 是可以得到最大的价值之和。
示例 2:
输入:nums = [2,3], k = 7, edges = [[0,1]] 输出:9 解释:Alice 可以通过一次操作得到最大和 9 : - 选择边 [0,1] 。nums[0] 变为:2 XOR 7 = 5 ,nums[1] 变为:3 XOR 7 = 4 ,数组 nums 变为:[2,3] -> [5,4] 。 所有节点价值之和为 5 + 4 = 9 。 9 是可以得到最大的价值之和。
示例 3:
输入:nums = [7,7,7,7,7,7], k = 3, edges = [[0,1],[0,2],[0,3],[0,4],[0,5]] 输出:42 解释:Alice 不需要执行任何操作,就可以得到最大价值之和 42 。
提示:
2 <= n == nums.length <= 2 * 104
1 <= k <= 109
0 <= nums[i] <= 109
edges.length == n - 1
edges[i].length == 2
0 <= edges[i][0], edges[i][1] <= n - 1
- 输入保证
edges
构成一棵合法的树。
方法一:贪心
题目允许我们任意次选择树上任意一条边,将边上两点的值异或上 k,求所有节点值之和的最大值。
首先,由异或运算的性质可知,一个值 a 异或奇数次另一个值 k,值为 a⊕k,异或偶数次 k 值为 a。其次,对于树上任意两点,存在一条路径,对路径上的每一条边进行操作,除了路径的起点和终点进行了一次异或,剩下的所有点都进行了两次异或,值不变。也就是等价于我们可以对树上任意两点进行一次异或操作。因此,问题转化为对树上任意两点进行异或 k 操作,使得所有节点值之和最大。
我们可以使用贪心的思路来解决这个问题。令 res = nums[0] + nums[1] + ... + nums[n-1],diff[i]=(nums[i]⊕k)−nums[i],并将 diff 数组排序,按从大到小的顺序遍历 diff。每次将 diff 的两个元素相加,如果它们的和非负,则把和加到 res;如果和为负数,则结束遍历。遍历完成后的 res 即为和的最大值。
将 diff 排序,从大到小遍历,每次取两个值相加的操作,表示每次取两个异或后值增加最多的点进行操作,从而使节点值的总和增加最多。由于没有其它操作能使总和更大,贪心策略是正确的。
class Solution {
public:
long long maximumValueSum(vector<int>& nums, int k, vector<vector<int>>& edges) {
long long res = accumulate(nums.begin(), nums.end(), 0ll);
vector<int> diff;
for (auto& a : nums)
{
diff.push_back((a ^ k) - a);
}
sort(diff.begin(), diff.end());
for (int i = diff.size() - 1; i > 0 && diff[i] + diff[i - 1] >= 0; i -= 2)
{
res += max(0, diff[i] + diff[i - 1]);
}
return res;
}
};