leetcode 3068. 最大节点价值之和

3068. 最大节点价值之和 - 力扣(LeetCode)https://leetcode.cn/problems/find-the-maximum-sum-of-node-values/description/?envType=daily-question&envId=2025-05-23

给你一棵 n 个节点的 无向 树,节点从 0 到 n - 1 编号。树以长度为 n - 1 下标从 0 开始的二维整数数组 edges 的形式给你,其中 edges[i] = [ui, vi] 表示树中节点 ui 和 vi 之间有一条边。同时给你一个  整数 k 和一个长度为 n 下标从 0 开始的 非负 整数数组 nums ,其中 nums[i] 表示节点 i 的 价值 。

Alice 想 最大化 树中所有节点价值之和。为了实现这一目标,Alice 可以执行以下操作 任意 次(包括 0 次):

  • 选择连接节点 u 和 v 的边 [u, v] ,并将它们的值更新为:
    • nums[u] = nums[u] XOR k
    • nums[v] = nums[v] XOR k

请你返回 Alice 通过执行以上操作 任意次 后,可以得到所有节点 价值之和 的 最大值 。

示例 1:

输入:nums = [1,2,1], k = 3, edges = [[0,1],[0,2]]
输出:6
解释:Alice 可以通过一次操作得到最大价值和 6 :
- 选择边 [0,2] 。nums[0] 和 nums[2] 都变为:1 XOR 3 = 2 ,数组 nums 变为:[1,2,1] -> [2,2,2] 。
所有节点价值之和为 2 + 2 + 2 = 6 。
6 是可以得到最大的价值之和。

示例 2:

输入:nums = [2,3], k = 7, edges = [[0,1]]
输出:9
解释:Alice 可以通过一次操作得到最大和 9 :
- 选择边 [0,1] 。nums[0] 变为:2 XOR 7 = 5 ,nums[1] 变为:3 XOR 7 = 4 ,数组 nums 变为:[2,3] -> [5,4] 。
所有节点价值之和为 5 + 4 = 9 。
9 是可以得到最大的价值之和。

示例 3:

输入:nums = [7,7,7,7,7,7], k = 3, edges = [[0,1],[0,2],[0,3],[0,4],[0,5]]
输出:42
解释:Alice 不需要执行任何操作,就可以得到最大价值之和 42 。

提示:

  • 2 <= n == nums.length <= 2 * 104
  • 1 <= k <= 109
  • 0 <= nums[i] <= 109
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= edges[i][0], edges[i][1] <= n - 1
  • 输入保证 edges 构成一棵合法的树。

方法一:贪心

题目允许我们任意次选择树上任意一条边,将边上两点的值异或上 k,求所有节点值之和的最大值。

首先,由异或运算的性质可知,一个值 a 异或奇数次另一个值 k,值为 a⊕k,异或偶数次 k 值为 a。其次,对于树上任意两点,存在一条路径,对路径上的每一条边进行操作,除了路径的起点和终点进行了一次异或,剩下的所有点都进行了两次异或,值不变。也就是等价于我们可以对树上任意两点进行一次异或操作。因此,问题转化为对树上任意两点进行异或 k 操作,使得所有节点值之和最大。

我们可以使用贪心的思路来解决这个问题。令 res = nums[0] + nums[1] + ... + nums[n-1],diff[i]=(nums[i]⊕k)−nums[i],并将 diff 数组排序,按从大到小的顺序遍历 diff。每次将 diff 的两个元素相加,如果它们的和非负,则把和加到 res;如果和为负数,则结束遍历。遍历完成后的 res 即为和的最大值。

将 diff 排序,从大到小遍历,每次取两个值相加的操作,表示每次取两个异或后值增加最多的点进行操作,从而使节点值的总和增加最多。由于没有其它操作能使总和更大,贪心策略是正确的。

class Solution {
public:
    long long maximumValueSum(vector<int>& nums, int k, vector<vector<int>>& edges) {
        long long res = accumulate(nums.begin(), nums.end(), 0ll);
        vector<int> diff;
        for (auto& a : nums) 
        {
            diff.push_back((a ^ k) - a);
        }
        sort(diff.begin(), diff.end());
        for (int i = diff.size() - 1; i > 0 && diff[i] + diff[i - 1] >= 0; i -= 2) 
        {
            res += max(0, diff[i] + diff[i - 1]);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值