【数学归纳法】【位运算】【异或】3068最大节点价值之和|2267

本文涉及知识点

数学归纳法
位运算、状态压缩、枚举子集汇总 异或

LeetCode3068. 最大节点价值之和

给你一棵 n 个节点的 无向 树,节点从 0 到 n - 1 编号。树以长度为 n - 1 下标从 0 开始的二维整数数组 edges 的形式给你,其中 edges[i] = [ui, vi] 表示树中节点 ui 和 vi 之间有一条边。同时给你一个 正 整数 k 和一个长度为 n 下标从 0 开始的 非负 整数数组 nums ,其中 nums[i] 表示节点 i 的 价值 。
Alice 想 最大化 树中所有节点价值之和。为了实现这一目标,Alice 可以执行以下操作 任意 次(包括 0 次):
选择连接节点 u 和 v 的边 [u, v] ,并将它们的值更新为:
nums[u] = nums[u] XOR k
nums[v] = nums[v] XOR k
请你返回 Alice 通过执行以上操作 任意次 后,可以得到所有节点 价值之和 的 最大值 。
示例 1:输入:nums = [1,2,1], k = 3, edges = [[0,1],[0,2]]
输出:6
解释:Alice 可以通过一次操作得到最大价值和 6 :

  • 选择边 [0,2] 。nums[0] 和 nums[2] 都变为:1 XOR 3 = 2 ,数组 nums 变为:[1,2,1] -> [2,2,2] 。
    所有节点价值之和为 2 + 2 + 2 = 6 。
    6 是可以得到最大的价值之和。
    示例 2:

在这里插入图片描述

输入:nums = [2,3], k = 7, edges = [[0,1]]
输出:9
解释:Alice 可以通过一次操作得到最大和 9 :

  • 选择边 [0,1] 。nums[0] 变为:2 XOR 7 = 5 ,nums[1] 变为:3 XOR 7 = 4 ,数组 nums 变为:[2,3] -> [5,4] 。
    所有节点价值之和为 5 + 4 = 9 。
    9 是可以得到最大的价值之和。
    示例 3:

在这里插入图片描述

输入:nums = [7,7,7,7,7,7], k = 3, edges = [[0,1],[0,2],[0,3],[0,4],[0,5]]
输出:42
解释:Alice 不需要执行任何操作,就可以得到最大价值之和 42 。

在这里插入图片描述

提示:

2 <= n == nums.length <= 2 * 104
1 <= k <= 109
0 <= nums[i] <= 109
edges.length == n - 1
edges[i].length == 2
0 <= edges[i][0], edges[i][1] <= n - 1
输入保证 edges 构成一棵合法的树。

位运算

x ⊕ k ⊕ k 的值是 x ,故对同一个节点操作 k 次后,结果不边。 x\oplus k \oplus k 的值是x,故对同一个节点操作k次后,结果不边。 xkk的值是x,故对同一个节点操作k次后,结果不边。

图论

树说明是连通的。树是无向连通无环图。

数学归纳法

一,节点a和b直接相连,根据题意,可以nums[a]和nums[b]分别 ⊕ \oplus k。
二,节点a b 通过p条变相连,a 和c通过p+1条边相连,且最后一条边是bc。如果能nums[a]和nums[b]分别 ⊕ \oplus k,其它节点不变。则可以nums[a]和nums[c] ⊕ \oplus k,中间的节点不变。
分两步:
操作(a,b) 操作(b,c) ,由于nums[b] ⊕ \oplus k 两次,其值不变。
也就是 任意连通的节点都可以 ⊕ \oplus k,而不影响其它节点。

记录个节点 ⊕ \oplus k 的变化,如果变大的数量是偶数,全部变大;如果奇数,两种选择:
a,除最小的外,全部变大。
b,最小的减少最少的结合,余下的两两结合。

代码

class Solution {
public:
	long long maximumValueSum(vector<int>& nums, int k, vector<vector<int>>& edges) {
		vector<int> vAdd;
		for (const auto& n : nums) {
			vAdd.emplace_back((n ^ k) - n);
		}
		sort(vAdd.begin(), vAdd.end());
		long long llRet = std::accumulate(nums.begin(), nums.end(), 0LL);
		int index = std::upper_bound(vAdd.begin(), vAdd.end(), 0) - vAdd.begin();
		if (1 & (vAdd.size()-index)) {
			if ((index) && (vAdd[index] + vAdd[index - 1] >= 0)) {
				index--;
			}
			else {
				index++;
			}
		}
		llRet += std::accumulate(vAdd.begin()+ index, vAdd.end(), 0LL);
		return  llRet;
	}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{

    assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
    if (v1.size() != v2.size())
    {
        assert(false);
        return;
    }
    for (int i = 0; i < v1.size(); i++)
    {
        Assert(v1[i], v2[i]);
    }

}

int main()
{
	vector<int> nums;
	int k;
	vector<vector<int>> edges;
	{
		Solution sln;
		nums = { 1, 2, 1 }, k = 3;
		auto res = sln.maximumValueSum(nums, k,edges);
		Assert(6LL, res);
	}
	{
		Solution sln;
		nums = { 2,3 }, k = 7;
		auto res = sln.maximumValueSum(nums, k, edges);
		Assert(9LL, res);
	}
	{
		Solution sln;
		nums = { 7,7,7,7,7,7 }, k = 3;
		auto res = sln.maximumValueSum(nums, k, edges);
		Assert(42LL, res);
	}
}

2024年3月版

class Solution {
public:
	long long maximumValueSum(vector<int>& nums, int k, vector<vector<int>>& edges) {
		vector<int> v;
		for (const auto& n : nums)
		{
			v.emplace_back((n ^ k) - n);
		}
		long long llRet = std::accumulate(nums.begin(), nums.end(), 0LL);
		sort(v.begin(), v.end());
		while (v.size() >= 2)
		{
			long long cur = v.back() + v[v.size() - 2];
			if (cur <= 0)
			{
				break;
			}
			llRet += cur;
			v.pop_back();
			v.pop_back();
		}
		return llRet;
	}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闻缺陷则喜何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值