河南省第十五届ICPC大学生程序设计竞赛 F

题目链接

题目描述

给你一个正整数 M M M 请你求出一个最小的正整数 N N N 满足 N 的阶层是 M 的倍速 N的阶层是M的倍速 N的阶层是M的倍速

由于M实在是太大了,为了方便你读入,善良的出题人给你K个整数e1,e2,e3…ek

e i ei ei i i i代表着第 i i i个素数,ei代表着ei个第i个素数相乘

比如e1为3,第1个素数是2,那么e1为M的贡献就是乘上 2 ∗ 2 ∗ 2 2*2*2 222

先考虑一个数怎么样才能整除另一个数(是另一个数的倍数)

一个数x拆分成若干个素数相乘,如果每个素数的数量都比另一个数y多,那么x就是y的倍数

这里给你的M就是写成若干个素数相乘的形式

然后很显然这个题有单调性,因为是连乘,如果N!能够整除M,那么(N+1)!也能

既然答案满足单调性,那我们就二分答案

那么check函数怎么写呢,对于一个数x!拆分之后含有多少个y,很显然有
x / y + x / ( y ∗ y ) + x / ( y ∗ y ∗ y ) . . . . . . . x/y+x/(y*y)+x/(y*y*y)....... x/y+x/yy+x/yyy.......

为了防止爆 l o n g long long l o n g long long我们除就可以了

#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 5;
//#define int long long
const int INF = 4e18+5;
#define F(i,l,r) for(int i=l;i<=r;i++)
#define R(i,l,r) for(int i=r;i>=l;i--)
#define vv vector
#define fi first
#define se second
#define pii pair<int,int>
typedef long long ll;
const int mod = 998244353; 
//const int mod = 1e9+7; 
const int M = 1e7+5;
int b[N],dp[50][N],vis[N],pri[N]; 
ll a[N];
int dx[4]={1,0,-1,0};
int dy[4]={0,1,0,-1};
int n,m,k,ans,x,y,n0,n2,m0,m2,op;
//map<int,int>mp;
map<int,int>mmap;
char mp[1005][1005];
vector<int>v[10];
int lowbit(int x) {
	return x&-x;
}
char xx[N];
bool temp;
int kuai(int x,int y){
	int sum=1;
	x%=mod;
	while(y){
		if(y%2){
			y--;
			sum*=x;
			sum%=mod;
		  }
	  x*=x;
	  y/=2;
	  x%=mod;
	}
	return sum;
}
void init(){
	op=0;
	F(i,2,10000){
		if(!vis[i]){
			pri[++op]=i;
			vis[i]=1;
		}
		for(int j=1;i*pri[j]<=10000;j++){
			vis[i*pri[j]]=1;
			if(i%pri[j]==0) break;
		}
	}
}
struct node{
	int sum,l,r,add;
}tree[N];
bool check(int x){
	F(i,1,n){
		int sum=0;
		y=pri[i];
		while(y<=x){
			sum+=x/y;
			y*=pri[i];
		}
		if(sum<a[i]) return false;
	}
	return true;
}
void solve()
{
	cin>>n;
	F(i,1,n) cin>>a[i];
	int l=0,r=1e9+8;
	while(l<r){
		int mid=l+r>>1;
		if(check(mid)) r=mid;
		else l=mid+1;
	}
	cout<<r<<endl;
}
signed main() 
{
	ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0); // cin.tie(nullptr);
    int T = 1;                                                                                                                                                                                                                                                                    
    cin >> T;
    init(); 
    for (int i = 1; i <= T; i++)
    {
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值