D - Longest Max Min Subsequence (堆写法)

#include<bits/stdc++.h>

using namespace std;     
const int N = 3e5 + 10 , M = 10, INF = 0x3f3f3f3f;
const double eps = 1e-8;
 
//#define x first
//#define y second
 
typedef unsigned long long ull; 
typedef long long ll;
typedef pair<int, int> pii;

int arr[N], cnt[N], res[N];
bool st[N];

//重写堆的比较函数
struct Node1
{
   int x, y;
};

struct Node2
{
   int x, y;
};

bool operator < (const Node1& a, const Node1& b)
{
   if(a.x != b.x) return a.x < b.x;
   return a.y > b.y;
}

bool operator < (const Node2& a, const Node2& b)
{
   if(a.x != b.x) return a.x > b.x;
   return a.y > b.y;
}

void Solved()
{       
    int n;
    cin >> n;

    for(int i = 1; i <= n; i ++)
    {
       cin >> arr[i];
       cnt[arr[i]] = 0;
       st[arr[i]] = false;
    }

    for(int i = 1; i <= n; i ++)
       cnt[arr[i]] ++;

    priority_queue<Node2> mi;
    priority_queue<Node1> mx;
    
    int idx = 1;

    for(int r = 1, l = 1; r <= n; r ++)
    {
       mx.push({arr[r], r}), mi.push({arr[r], r});
       cnt[arr[r]] --;
       if(cnt[arr[r]] > 0 || st[arr[r]]) continue;
       
       while(!st[arr[r]])
       {    
          if(idx % 2)
          {
            auto t = mx.top();
            mx.pop();
            if(st[t.x] || t.y < l) continue;
            res[idx ++] = t.x, st[t.x] = true;
            l = t.y + 1;
          }
          else
          {
             auto t = mi.top();
             mi.pop();
             if(st[t.x] || t.y < l) continue;
             res[idx ++] = t.x, st[t.x] = true;
             l = t.y + 1;
          }
       }
    }

    cout << idx - 1 << "\n";

    for(int i = 1; i < idx; i ++)
       cout << res[i] << " ";
    cout << "\n";       
}
 
int main()
{
      
   /* ios::sync_with_stdio(false);
   cin.tie(0);
   cout.tie(0); */
 
 
   int t;
   cin >> t;
   //t = 1;

   while (t --)
   {
      Solved();
   }
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值