《昇思25天学习打卡营第8天|CarpeDiem》

打卡

在这里插入图片描述

今天是昇思25天学习打卡营的第8天,终于迎来 模型训练 的部分了!!!

兴奋 发癫

模型训练

模型训练一般分为四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

现在我们有了数据集和模型后,可以进行模型的训练与评估。

评估的时候也可以采用第二天的方式 创建一个 loss_history 的数组 将每次的loss值计算出来存进去,然后借助 matplotlab 模块将loss数据可视化展示,这样可以更加直观的感受到模型训练的过程和结果的好坏

构建数据集

首先从数据集 Dataset加载代码,构建数据集。

老生常谈,没什么好说的了 不会就***给我去前面的篇章看

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)


def datapipe(path, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = MnistDataset(path)
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)

在这里插入图片描述

定义神经网络模型

网络构建中加载代码,构建一个神经网络模型。

不会就***给我去前面的篇章看

不好意思这个没单独讲过

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
    
class Network_new(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 1024),
            nn.ReLU(),
            nn.Dense(1024, 512),
            nn.ReLU(),
            nn.Dense(512, 128),
            nn.ReLU(),
            nn.Dense(128, 10),
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
model_new = Network_new()

这里的神经网络模型和第二天的神经网络模型是一模一样的

都是将 28*28 的图片先线性变换为 512 再线性变化成 512 再线性变化成 10 得到 10 个类别的特征值

Network_new 是创建的一个新的模型 测试一下多添加一些新的网络层后 其训练结果是怎么样变换的

采用 28*28 -> 512 -> 1024 -> 512 -> 128 -> 10 的形式

可以发现多添加了两层分别为 1024 和 128 个神经元

定义超参、损失函数和优化器

超参

超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:

w t + 1 = w t − η 1 n ∑ x ∈ B ∇ l ( x , w t ) w_{t+1}=w_{t}-\eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l\left(x, w_{t}\right) wt+1=wtηn1xBl(x,wt)

公式中, n n n是批量大小(batch size), η η η是学习率(learning rate)。另外, w t w_{t} wt为训练轮次 t t t中的权重参数, ∇ l \nabla l l为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。

epochs = 3
batch_size = 64
learning_rate = 1e-2

损失函数

损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。

常见的损失函数包括用于回归任务的nn.MSELoss(均方误差)和用于分类的nn.NLLLoss(负对数似然)等。 nn.CrossEntropyLoss 结合了nn.LogSoftmaxnn.NLLLoss,可以对logits 进行归一化并计算预测误差。

loss_fn = nn.CrossEntropyLoss()
loss_fn_new = nn.CrossEntropyLoss()

优化器

模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。

我们通过model.trainable_params()方法获得模型的可训练参数,并传入学习率超参来初始化优化器。

optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
optimizer_new = nn.SGD(model_new.trainable_params(), learning_rate=learning_rate)

在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:

grads = grad_fn(inputs)

optimizer(grads)

训练与评估

设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:

  1. 训练:迭代训练数据集,并尝试收敛到最佳参数。
  2. 验证/测试:迭代测试数据集,以检查模型性能是否提升。

接下来我们定义用于训练的train_loop函数和用于测试的test_loop函数。

使用函数式自动微分,需先定义正向函数forward_fn,使用value_and_grad获得微分函数grad_fn。然后,我们将微分函数和优化器的执行封装为train_step函数,接下来循环迭代数据集进行训练即可。

# Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

def forward_fn_new(data, label):
    logits = model(data)
    loss = loss_fn_new(logits, label)
    return loss, logits

# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
grad_fn_new = mindspore.value_and_grad(forward_fn_new, None, optimizer_new.parameters, has_aux=True)

# Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train_step_new(data, label):
    (loss, _), grads = grad_fn_new(data, label)
    optimizer_new(grads)
    return loss


# 相较第二天的新加入了一个参数 loss_history 使得可以记录历史 loss 值
def train_loop(model, dataset,loss_history):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)
        
        # 添加损失到 loss_history
        loss_history.append(loss)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
        
            # # 添加损失到 loss_history
            # loss_history.append(loss)
        
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

            

test_loop函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。

def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

我们将实例化的损失函数和优化器传入train_looptest_loop中。训练3轮并输出loss和Accuracy,查看性能变化。

# use a loss_history array to save losses for visual display 
# 用一个 loss_history 数组去存储所有的损失值 loss 以便进行可视化展示
loss_history = []
loss_history_new = []

loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

loss_fn_new = nn.CrossEntropyLoss()
optimizer_new = nn.SGD(model_new.trainable_params(), learning_rate=learning_rate)

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(model, train_dataset, loss_history)
    test_loop(model, test_dataset, loss_fn)
print("Done!")

for t in range(epochs):
    print(f"Epoch_new {t+1}\n-------------------------------")
    train_loop(model_new, train_dataset, loss_history_new)
    test_loop(model_new, test_dataset, loss_fn_new)
print("Done_new!")

在这里插入图片描述

下面导入 matplotlib 模块来进行可视化展示

import matplotlib.pyplot as plt
plt.plot(loss_history)

在这里插入图片描述

plt.plot(loss_history_new)

在这里插入图片描述

就上面两个图来看,第一个训练的结果还是蛮不错的,第二个的loss抖动太多,虽然幅度不大(0.05–0.35)但是还是不如第一个,毕竟加了两层,白瞎了

所以,在训练模型的时候一定要记得化繁为简,多大规模的模型干多大规模的事情,要不然很容易出现譬如:欠拟合、过拟合等各种各样的问题 还得好好调教

这就是今天的全部内容了,别忘了点赞收藏加关注 别逼我求你!!!

  • 28
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AbsoluteClownMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值