昇思25天学习打卡营|CarpeDiem
文章平均质量分 93
AbsoluteClownMaster
这个作者很懒,什么都没留下…
展开
-
《昇思25天学习打卡营第8天|CarpeDiem》
从网络构建中加载代码,构建一个神经网络模型。不会就***给我去前面的篇章看不好意思这个没单独讲过nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),这里的神经网络模型和第二天的神经网络模型是一模一样的都是将 28*28 的图片先线性变换为 512 再线性变化成 512 再线性变化成 10 得到 10 个类别的特征值Network_new 是创建的一个新的模型 测试一下多添加一些新的网络层后 其训练结果是怎么样变换的。原创 2024-07-01 13:15:10 · 719 阅读 · 0 评论 -
《昇思25天学习打卡营第7天|CarpeDiem》
打卡今天是昇思25天学习打卡营第7天,今天要学习的内容是听名字就知道是用于给函数求微分的 只不过是自动的罢了。原创 2024-06-30 13:16:57 · 1096 阅读 · 0 评论 -
《昇思25天学习打卡营第6天|CarpeDiem》
当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。construct意为神经网络(计算图)构建,相关内容详见使用静态图加速。nn.ReLU(),nn.ReLU(),这里的 super().init() 实在直接调用NetWork父类的构造函数 即nn.Cell的构造函数 然后在初始化自己的一些参数这里的 self.flatten = nn.Flatten() 是将数据展平 为了方便后续数据的处理。原创 2024-06-29 21:05:17 · 1187 阅读 · 0 评论 -
《昇思25天学习打卡营第5天|CarpeDiem》
打卡今天要学习的内容是。原创 2024-06-28 15:40:14 · 884 阅读 · 0 评论 -
《昇思25天学习打卡营第4天|CarpeDiem》
模块提供了一些常用的公开数据集和标准格式数据集的加载API。对于MindSpore暂不支持直接加载的数据集,可以构造自定义数据加载类或自定义数据集生成函数的方式来生成数据集,然后通过接口实现自定义方式的数据集加载。支持通过可随机访问数据集对象、可迭代数据集对象和生成器(generator)构造自定义数据集,下面分别对其进行介绍。原创 2024-06-28 14:46:55 · 688 阅读 · 0 评论 -
MindSpore中NumPy变量转换为Tensor张量使用的Tensor.from_numpy()函数到底是深拷贝还是浅拷贝
意思是说如果numpy数组连续的话将使用原numpy数组来构造张量,也就是浅拷贝,所以导致上面的t中的元素也加了1,因为这个t只是指向了和原来n一样地址的指针,并没有为了创建这个张量而开辟一块内存空间。所以这里的from_numpy是一个浅拷贝吗?至于这里对numpy类型的n加了1后,t为什么也加了一 emmm在英文释义里有那么一句话。这个时候我们可以发现,此时的from_numpy不是一个浅拷贝,而是一个深拷贝。刚刚好被群里扫盲的大佬推了一个python中探讨深浅拷贝的链接。类似数组转换张量的方法。原创 2024-06-26 20:48:32 · 475 阅读 · 0 评论 -
《昇思25天学习打卡营第3天|CarpeDiem》
意思是说如果numpy数组连续的话将使用原numpy数组来构造张量,也就是浅拷贝,所以导致上面的t中的元素也加了1,因为这个t只是指向了和原来n一样地址的指针,并没有为了创建这个张量而开辟一块内存空间。在某些应用场景中(比如推荐系统、分子动力学、图神经网络等),数据的特征是稀疏的,若使用普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销。张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。原创 2024-06-26 20:43:22 · 1089 阅读 · 0 评论 -
《昇思25天学习打卡营第2天|CarpeDiem》
今天是昇思学习打卡营的第2天,今天的内容是初试MindSpore,开发起来确实效率较高,主要是其他的我也不咋会,总的感觉下来确实是对新手友好的,但是对于我们这些刚刚接触MindSpore的新手来说,还是要打好基础,这一节我觉着应该学完几天后再回来看一下,看一下今天库库复制粘贴的代码是不是还记得是做什么的,当然我的写了注释,仅供参考!!!下面是今天的学习笔记。原创 2024-06-25 16:01:57 · 1163 阅读 · 0 评论 -
《昇思25天学习打卡营第1天|CarpeDiem》
本节将会整体介绍昇思MindSpore和华为昇腾AI全栈,并介绍昇思MindSpore在华为昇腾AI全栈中的位置。对昇思MindSpore感兴趣的开发者,最后可以参与昇思MindSpore的社区并一键三连。昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。ModelZoo(模型库)原创 2024-06-25 00:36:39 · 1000 阅读 · 0 评论