神经网络基础——吴恩达学习笔记

一些记号

训练集:((x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})),其中x^{(i)}\in \mathbb{R}^n,\ y^{(i)} \in \{0,1\}

将m个样本按列堆叠,其中每1列是一个样本,X \in \mathbb {R}^{n\times m},Y \in \mathbb{R}^{1 \times m}

X = \begin{bmatrix} \vdots & \vdots & & \vdots\\ x^{(1)} & x^{(2)} & \cdots & x^{(m)}\\ \vdots & \vdots & & \vdots \end{bmatrix} \ \ \ \ Y=[y^{(1)},y^{(2)},\cdots,y^{(m)}]

方括号与圆括号

a^{[l](i)}表示第i个样本在第l层的输出。

反向传播引言

链式法则

logistic回归

给定x,想要学得\hat{y}=P(y=1|x), \ \ 0 \leqslant \hat{y} \leqslant 1

模型

      参数:w \in \mathbb{R}^{n_x},\ b \in \mathbb{R}

       \hat{y} = sigmoid(w^Tx +b)

损失函数

      L(y^{(i)},\hat{y}^{(i)}) = -(y^{(i)}log(y^{(i)}) + (1-y^{(i)})log(1-\hat{y}^{(i)}))

           \begin{aligned} &if \ y^{(i)}=1: L(y^{(i)},\hat{y}^{(i)})=-log(\hat{y}^{(i)})) \ where\ \hat{y}^{(i)} should \ be \ closed to \ 1\\ &if \ y^{(i)}=0: L(y^{(i)},\hat{y}^{(i)})=-log(1-\hat{y}^{(i)}))\ where\ \hat{y}^{(i)} should \ be \ closed to \ 0 \end{aligned}

      J(w,b) =\frac{1}{m}\sum_{i=1}^{m}L(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}log(\hat{y}^{(i)})+(1-y^{(i)})log(1-\hat{y}^{(i)})]

     

原先遍历一遍样本(做一轮迭代)求解,是由两层循环循环组成的,外层是对样本的遍历(m次循环),内层是对每个特征的偏导的一个遍历(n_x+1次遍历)。手写体部分将内层遍历用向量化简化了。

          

对前向算法的向量化,避免了显示循环求解m个样本的预测值,这边直接用向量化(矩阵乘法+广播机制)简化。 

         

对后向算法的向量化,避免了显示循环求解梯度,这边直接用向量化(矩阵乘法)简化。  

     

单次迭代的向量化整体实现。 形状如下:X-(n, m);w-(n, 1); z-(1,m);A-(1,m);dz-(1, m);dw-(n,1)

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值