目录
1.1 对数坐标图
对数转换有双对数坐标转换和单轴对数坐标转换两种(刻度按照对数的规律变化)
loglog(y) 表示x,y坐标系都是对数坐标系
semilogx(y) 表示x坐标轴是对数坐标系
semilogy(...) 表示y坐标轴是对数坐标系
plotyy 有两个y坐标轴,一个在左边,一个在右边
1.用方形标记创建一个简单的loglog
x = logspace(-1,2);
loglog(x,exp(x),'-s')
grid on
2.创建一个简单的半对数坐标图
x = 0:.1:10;
semilogy(x,10.^x)
3.绘制的函数图、对数坐标图、半对数坐标图
x=logspace(first,last,n) 创建从first开始,last结束,生成从10的a次方到10的b次方之间按对数等分的n个元素的行向量
1.2 极坐标图
命令polar(theta,rho,s)表示用角度theta(弧度表示)和极半径rho做极坐标图,用s指定线型
例 画的极坐标图形
theta = linspace(0,2*pi);
rho = sin(2*theta).*cos(2*theta);
polar(theta,rho);
2.1三维图形
三维图形包括空间曲线和曲面图形
2.1.1三维曲线
1)一条曲线 plot3(x,y,z,s)
命令plot3(x,y,z,s)通过描点连线画出曲线,这里x,y,z都是n维向量,分别表示该曲线上点集的横坐标、纵坐标、函数值,s表示颜色,线型等
例 在区间画出曲线x=sint,y=cost,z=t,并分别标注
t=0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
xlabel('sin(t)')
ylabel('cos(t)')
2)多条曲线 plot3(x,y,z)
这里x,y,z都是m×n矩阵,其对应的每一列表示一条曲线
例 画多条曲线,观察函数
x = -3:0.1:3;
y = 1:0.1:5;
[x,y] = meshgrid(x,y);
z = (x+y).^2;
plot3(x,y,z)
2.2 空间曲面
1)surf(x,y,z)
X,Y,Z是三个数据矩阵,命令surf(X,Y,Z)将该数据点所表示的曲面画出
shading flat 将当前图形变得平滑
[x,y]=meshgrid(xgv,ygv)
meshgrid函数生成的X,Y是大小相等的矩阵,xgv,ygv都是行向量
2)mesh(x,y,z)
命令mesh(X,Y,Z)将该数据点在空间中描出,并连成网格
可根据Z=(X+Y)^2尝试输出图形和网格图
3.1处理图形
1.在图形上加格栅、图例和标注
1)grid on,grid off (网格线)
2)hh=xlabe1('string') 在x轴加图例
hh=ylabe1('string') 在y轴加图例
hh=zlabe1('string') 在z轴加图例
hh=title('string') 在顶端加图例
以往题中有例子,若新版本有可能输出错误,用其所改正后的代码即可
3)hh=gtext('string') 任意位置加入标注
2.定制坐标
axis([XMIN XMAX YMIN YMAX ZMIN ZMAX])
axis auto
命令axis auto将坐标轴返回到自动缺省值
例 在区间[0.005,0.01]显示 的图形
x = linspace(0.0001,0.01,1000);
y = sin(1./x);
plot(x,y);
axis([0.005 0.01 -1 1])
3.图形保持
1)hold on,hold off
注意:“hold on,hold off”后不能跟分号,若想将多条曲线画在一起,则可用“hold on”
2)H=figure
figure(H)
命令H=figure创建图形并返回图形的句柄
命令figure(H)新建H窗口,激活图形H使其可见,并把它置于其他图形之上
若想在一个界面上画一个图形,并将多个图形一起画,而又不能相互影响,则可用H=figure
例 在区间分别画出y=sinx,z=cosx的图形,保持并显示y=sinx的图形
x = linspace(0,2*pi,100);
y = sin(x);z = cos(x);
plot(x,y);
title('sin(x)');
pause
figure(2);
plot(x,z);
title('cos(x)')