km算法对最大全职匹配bfs算法的解释理解 n^3

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

typedef long long ll;

const int N = 510,INF = 1e18;

ll  n,m;
ll a[N][N];

ll ex[N],ey[N],visy[N],now;
ll match[N],pre[N],slack[N];

void bfs(ll u){
	ll x,y = 0,yy = 0,d;
	memset(pre,0,sizeof pre);
	for(int i = 1; i <= n; i++) slack[i] = INF; //需要变小的点 
	match[y] = u;
	while(1){
		x = match[y],d = INF,visy[y] = now;
		for(int i = 1; i <= n; i++){
			if(visy[i] == now) continue;
			if(slack[i] > ex[x] + ey[i] - a[x][i]){
				slack[i] = ex[x] + ey[i] - a[x][i]; 
				pre[i] = y; //表示 y对应的 点 y 需要减小的权值 
			}
			if(slack[i] < d){
				d = slack[i],yy = i; //找出减少最小的那条边 
			}
		}
		
		for(int i = 0; i <= n; i++){
			if(visy[i] == now) ex[match[i]] -= d,ey[i] += d;
			else slack[i] -= d;
		}
		
		y = yy;
		
		if(match[y] == -1) break;
	}
	
	while(y){
		match[y] = match[pre[y]],y = pre[y]; // 更新每个点对应的点 
	}
	
}

int main(){
	scanf("%lld%lld",&n,&m);
	
	for(int i = 1; i <= n; i++){
		for(int j = 1; j <= n; j++){
			a[i][j] = -INF;
		}
	}
	
	for(int i = 1; i <= m; i++){
		ll x,y,w;
		scanf("%lld%lld%lld",&x,&y,&w);
		a[x][y] = max(a[x][y],w);
	}
	
	memset(match,-1,sizeof match);
	memset(ex,0,sizeof ex);
	memset(ey,0,sizeof ey);
	memset(visy,0,sizeof visy);
	
	for(int i = 1; i <= n; i++){
		++now;
		bfs(i);
	}
	
	ll sum = 0;
	for(int i = 1; i <= n; i++){
		if(match[i] != -1) sum += a[match[i]][i];
	}
	
	cout << sum << endl;
	
	for(int i = 1; i <= n; i++){
		cout << match[i] << " ";
	}
	
	
	
	
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值