二分图最大权匹配(完美匹配)——KM算法模板(dfs版O(n^4) + bfs版O(n^3))

戳这里!——→KM算法详解

考虑到二分图中两个集合中的点并不总是相同,为了能应用 KM算法解决二分图的最大权匹配,需要先作如下处理:
      将两个集合中点数比较少的补点,使得两边点数相同,再将不存在的边权重设为 0,这种情况下,问题就转换成求最大权完美匹配问题 ,从而能应用KM算法求解。

具体算法流程:
(1)分配可行顶标,对每个顶标执行(2)(3)(4)
(2)匈牙利算法找到增广路
(3)找不到增广路就调整顶标。
(4)重复(2),(3)直到找到增广路

模板题:P6577 【模板】二分图最大权完美匹配

DFS版本:

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 507, M = 5e3 +7, maxn = 500;
const int mod = 1e9+7;
const ll INF = 1e18+7;

ll W[maxn][maxn],n, m;
ll Lx[maxn],Ly[maxn];//顶标 
int Left[maxn];//右边第i个点对应的左边的点的编号 
bool S[maxn],T[maxn];//是否在增广路 

bool match(int i){
	S[i]=true;
	for(int j=1;j<=n;j++)
	if(Lx[i]+Ly[j]==W[i][j] && !T[j]){//i到j可行 且 j未被访问 
		T[j]=true;
		if(!Left[j] || match(Left[j])){ //j未标记 或者 通过j可以找打增广路 
			Left[j]=i;
            return true;
		}
	}
	return false;
}

void update(){//更新顶标 
	ll a=INF;
	for(int i=1;i<=n;i++)if(S[i]){
		for(int j=1;j<=n;j++)if(!T[j])a=min(a,Lx[i]+Ly[j]-W[i][j]);//i在增广路 且 j不在增广路中 
	}
	for(int i=1;i<=n;i++){
		if(S[i])Lx[i]-=a;   //更新左边的顶标
		if(T[i])Ly[i]+=a;   //更新右边的顶标
	}
}

ll KM(){

	for(int i=1;i<=n;i++){
		Left[i]=Lx[i]=Ly[i]=0;
		for(int j=1;j<=n;j++)Lx[i]=max(Lx[i],W[i][j]);
	}
    //初始化左顶标和右顶标

	for(int i=1;i<=n;i++){ //匹配每一个左端点
		for(;;){
			for(int j=1;j<=n;j++)S[j]=T[j]=0; //每次匹配前清空标记
			if(match(i))break; //找到增广路就退出
            else update(); //找不到增广路就更新顶标
		}
	}

    ll ans = 0;
    for(int i = 1; i <= n; ++ i) ans += W[Left[i]][i];
    return ans;
}


void solve() {
    scanf("%lld%lld", &n, &m);
    for(int i = 1; i <= n; ++ i)
        for(int j = 1; j <= n; ++ j) 
            W[i][j] = -INF;         //如果带有负权边的话,不做初始化操作会使得
                                    //两个没有边的点之间的边权值为0,会导致答
                                    //案错误,所以如果两个点之间无边,我们把
                                    //它设为负无穷
    for(int i = 1; i <= m; ++ i) {
        ll a, b, c;
        scanf("%lld%lld%lld%", &a, &b, &c);
        W[a][b] = max(W[a][b], c);
    }
    printf("%lld\n", KM());
    for(int i = 1; i <= n; ++ i) printf("%d ", Left[i]);
}

int main() {
    #ifndef ONLINE_JUDGE
        freopen("cf.in", "r", stdin);
        freopen("cf.out", "w", stdout);
    #endif
    // int t;
    // cin >> t;
    // while(t --) {
        solve();
    // }
    return 0;
}


在这里插入图片描述
我们发现dfs版本的复杂度并不能A掉这个题,因为n是500,所以n^4已经超接近10s了,所以我们可以换bfs版本来试一试。

BFS版本:

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;

const int N = 507, M = 5e3 +7, maxn = 1007;
const int mod = 1e9+7;
const ll INF = 1e15+7;

ll w[N][N];//边权
ll la[N], lb[N];//左、右部点的顶标
bool va[N], vb[N];//访问标记,是否在交错树中
int match[N];//右部点匹配的左部点(一个只能匹配一个嘛)
int n;
ll delta, upd[N];  
int p[N];
ll c[N];

void bfs(int x) {
    int a, y = 0, y1 = 0;

    for(int i = 1; i <= n; ++ i)
        p[i] = 0, c[i] = INF;

    match[y] = x;

    do{
        a = match[y], delta = INF, vb[y] = true;
        for(int b = 1; b <= n; ++ b){
            if(!vb[b]){
                if(c[b] > la[a] + lb[b] - w[a][b])
                    c[b] = la[a] + lb[b] - w[a][b], p[b] = y;
                if(c[b] < delta)//Δ还是取最小的
                    delta = c[b], y1 = b;
            }
        }
        for(int b = 0; b <= n; ++ b)
            if(vb[b])
                la[match[b]] -= delta, lb[b] += delta;
            else c[b] -= delta;
        y = y1;
    }while(match[y]);
    while(y)match[y] = match[p[y]], y = p[y];
}

ll KM() {
    for(int i = 1; i <= n; ++ i)
        match[i] = la[i] = lb[i] = 0;
    for(int i = 1; i <= n; ++ i){
        for(int j = 1; j <= n; ++ j)
            vb[j] = false;
        bfs(i);
    }
    ll res = 0;
    for(int y = 1; y <= n; ++ y)
        res += w[match[y]][y];
    return res;
}

int m;

void solve() {
    scanf("%lld%lld", &n, &m);
    for(int i = 1; i <= n; ++ i)
        for(int j = 1; j <= n; ++ j) 
            w[i][j] = -INF;         //如果带有负权边的话,不做初始化操作会使得
                                    //两个没有边的点之间的边权值为0,会导致答
                                    //案错误,所以如果两个点之间无边,我们把
                                    //它设为负无穷
    for(int i = 1; i <= m; ++ i) {
        ll a, b, c;
        scanf("%lld%lld%lld%", &a, &b, &c);
        w[a][b] = max(w[a][b], c);
    }
    printf("%lld\n", KM());
    for(int i = 1; i <= n; ++ i) printf("%d ", match[i]);
}

int main() {
    #ifndef ONLINE_JUDGE
        freopen("cf.in", "r", stdin);
        freopen("cf.out", "w", stdout);
    #endif
    // int t;
    // cin >> t;
    // while(t --) {
        solve();
    // }
    return 0;
}


在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二分图大权匹配是指在一个二分图中,找到一种匹配方式,使得匹配的边的权重之和最大。 首先,二分图是指一个图中的所有节点可以被分为两个不相交的集合,并且图中的每条边都连接着一个集合中的节点和另一个集合中的节点。 二分图大权匹配可以用多种算法来求解,包括匈牙利算法KM算法等等。其中,匈牙利算法是一种经典的求解二分图最大匹配问题的算法。 以下是匈牙利算法的基本思想和步骤: 1. 初始化:将每个节点都标记为未匹配状态。 2. 对于二分图中的每个节点,依次进行匹配。 3. 对于每个未匹配的节点,尝试找到它可以匹配的节点。具体地,对于一个未匹配的节点,从它所在的集合中选择一个节点,然后尝试将它们匹配起来。如果匹配成功,则将两个节点标记为已匹配状态。 4. 如果一个节点无法匹配,则尝试将它和其他未匹配的节点匹配。如果仍然无法匹配,则返回失败。 5. 当所有节点都被匹配完毕时,算法结束。 在匈牙利算法的实现中,可以使用增广路径来优化匹配过程。增广路径是指一条从未匹配的节点出发,经过一系列已匹配的节点,最终到达另一个未匹配的节点的路径。 具体地,增广路径的求解步骤如下: 1. 从一个未匹配的节点开始,沿着未匹配的节点尝试匹配。 2. 如果找到了一个匹配节点,则从该匹配节点开始,继续沿着未匹配的节点尝试匹配。 3. 如果最终找到了一个未匹配的节点,则说明找到了一条增广路径。 在匈牙利算法中,每次找到一条增广路径时,可以将该路径上的匹配状态进行调整,使得当前的匹配数量增加一。由于增广路径的搜索过程可以通过 DFSBFS 进行,因此匈牙利算法的时间复杂度为 $O(NM)$,其中 $N$ 和 $M$ 分别表示二分图的两个集合中的节点数。 需要注意的是,虽然匈牙利算法的实现比较简单,但是对于大规模的图来说,它的时间复杂度可能较高,而且可能会存在一些性能问题。因此,在实际应用中,可能需要使用一些更加高效的算法来求解二分图大权匹配问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值