对于这道题大家都是用连通块来做的,其实数据水的话完全可以通过赤裸裸的状态转移来做。
假设点a的值为x,点b的值为y 如何使得__gcd(x,y) = 1? 一定是使得他们两个都有的质数,使其中一个数中这个质数消失。
那么对于1e5的数据来说最大只有 8个质数,所以我们可以通过枚举当前点删掉哪些质数就可以了,那么剩下的点就是对于当前点删掉的质数基础上再删一些共同的质数。
#include<iostream>
#include<utility>
#include<vector>
#include<cstring>
#define x first
#define y second
using namespace std;
const int N = 1e5 + 10,M = N * 2;
int head[N],to[M],last[M],cnt;
void add(int a,int b){
to[++cnt] = b;
last[cnt] = head[a];
head[a] = cnt;
}
vector<pair<int,int> >v[N];
int dp[N][1<<9],flag[N],a[N];
void dfs(int x,int pre){
for(int i = head[x]; i != -1; i = last[i]){
int j = to[i];
if(j == pre) continue;
dfs(j,x);
}
for(int i = 0; i < (1 << v[x].size()); i++){
for(int j = 0; j < v[x].size(); j++){
if(i & (1 << j)) dp[x][i] += v[x][j].y;
else flag[v[x][j].x] = 1;
}
for(int j = head[x]; j != -1; j = last[j]){
int k = to[j];
if(k == pre) continue;
int sum = 0;
for(int l = 0; l < v[k].size(); l++){
if(flag[v[k][l].x]) sum += (1 << l);
}
dp[x][i] += dp[k][sum];
}
//cout << x << " " << i << " " << dp[x][i] << endl;
for(int j = 0; j < v[x].size(); j++){
if(i & (1 << j));
else flag[v[x][j].x] = 0;
}
}
for(int i = 0; i < v[x].size(); i++){
for(int j = (1 << v[x].size()) - 1; j >= 0; j--){
if(j & (1 << i)){
dp[x][j ^ (1 << i)] = min(dp[x][j ^ (1 << i)],dp[x][j]);
}
}
} //这是求子集
return;
}
int main(){
int n;
cin >> n;
memset(head,-1,sizeof head);
for(int i = 1; i <= n; i++){
cin >> a[i];
int x = a[i];
for(int j = 2; j * j <= x; j++){
int sum = 0;
while(x % j == 0){
sum++;
x /= j;
}
if(sum){
v[i].push_back({j,sum});
}
}
if(x > 1) v[i].push_back({x,1});
}
for(int i = 1; i <= n - 1; i++){
int x,y;
cin >> x >> y;
add(x,y);
add(y,x);
}
dfs(1,0);
int minn = 0x3f3f3f3f;
for(int i = 0; i < (1 << v[1].size()); i++){
minn = min(minn,dp[1][i]);
}
cout << minn << endl;
}