acwing蓝桥杯c++A/B组辅导课--第一讲递推与递归

本文介绍了递归算法在不同场景下的应用,包括指数型枚举、排列型枚举、组合型枚举,以及如何解决简单斐波那契数列问题。同时,通过解析费解的开关和飞行员兄弟问题,展示了如何利用递归枚举策略找到最优解。此外,还涉及了翻硬币问题的解决方案。这些例子深入浅出地阐述了递归在解决实际问题中的重要作用。
摘要由CSDN通过智能技术生成

1.递归实现指数型枚举

画出递归搜索树,每个点选或不选 

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
const int N = 20;
int st[N];//判断每个数选或没选,0代表还没判断,1代表选,2代表不选
void dfs(int u)//从1开始看看[1,n]每个点选或不选
{
    if(u>n)
    {
        for(int i=1;i<=n;i++)
        {
            if(st[i]==1)
            {
                cout<<i<<" ";
            }
        }
        cout<<endl;
        return;
    }
    
    //1.选这个点
    st[u]=1;
    dfs(u+1);
    st[u]=0;
    
    //2.不选这个点
    st[u]=2;
    dfs(u+1);
    st[u]=0;
}
int main()
{
    cin>>n;
    dfs(1);
    return 0;
}

2.递归实现排列型枚举

画出递归搜索数,搜索时候看看每个位置选哪个数 

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
const int N = 15;
bool st[N];//st[i]表示i这个数用没用过
int a[N];//a[i]代表第i个位置上放谁
void dfs(int u)
{
    if(u>n)
    {
        for(int i=1;i<=n;i++)
        {
            cout<<a[i]<<" ";
        }
        cout<<endl;
        return;
    }
    for(int i=1;i<=n;i++)//每一个位置有n种选择
    {
        if(!st[i])
        {
            st[i]=true;
            a[u]=i;//将i放在第u个位置上
            dfs(u+1);
            //恢复现场
            st[i]=false;
            a[u]=0;
        }
    }
}
int main()
{
    cin>>n;
    dfs(1);//从n个数中的第一个数开始搜索,枚举每个位置上填谁
    return 0;
}

3.简单斐波那契

#include<iostream>
using namespace std;
int main()
{
    int n;
    cin>>n;
    int a=0,b=1;
    for(int i=0;i<n;i++)
    {
        cout<<a<<" ";
        int c=a+b;
        a=b,b=c;
    }
    return 0;
}

4.费解的开关

你玩过“拉灯”游戏吗?

25 盏灯排成一个 5×5 的方形。

每一个灯都有一个开关,游戏者可以改变它的状态。

每一步,游戏者可以改变某一个灯的状态。

游戏者改变一个灯的状态会产生连锁反应:和这个灯上下左右相邻的灯也要相应地改变其状态。

我们用数字 1 表示一盏开着的灯,用数字 0 表示关着的灯。

下面这种状态

10111
01101
10111
10000
11011

在改变了最左上角的灯的状态后将变成:

01111
11101
10111
10000
11011

再改变它正中间的灯后状态将变成:

01111
11001
11001
10100
11011

给定一些游戏的初始状态,编写程序判断游戏者是否可能在 6 步以内使所有的灯都变亮。

输入格式

第一行输入正整数 n,代表数据中共有 n 个待解决的游戏初始状态。

以下若干行数据分为 n 组,每组数据有 5 行,每行 5 个字符。

每组数据描述了一个游戏的初始状态。

各组数据间用一个空行分隔。

输出格式

一共输出 n 行数据,每行有一个小于等于 6 的整数,它表示对于输入数据中对应的游戏状态最少需要几步才能使所有灯变亮。

对于某一个游戏初始状态,若 6 步以内无法使所有灯变亮,则输出 −1。

数据范围

0<n≤500

输入样例:

3
00111
01011
10001
11010
11100

11101
11101
11110
11111
11111

01111
11111
11111
11111
11111

输出样例:

3
2
-1

本题思路:

关键:枚举第一行的所有操作情况

1.对第一行进行操作,由于第一行有5个格子代表5个灯,操作每个格子的灯有关或不关两种选择,所以选择共有op=32种
用op=[0,31]32个数的2进制数来分别对应一种操作

注意:这里不是枚举第一行的状态,是枚举对第一行怎么操作,如:11000代表按下第一行前两个灯

2.当我们发现对第一行进行了如上操作后,第二行的操作就固定了,只能去点亮第一行没亮的灯的下面的灯,依次类推,第3,4,5行的操作也固定

3.最后看一下最后一行的情况,如果最后一行刚好全部点亮,说明是可行的方案,如果最后一行最后有灯没有点亮,说明这种方案不行。还要注意方案数最后要在<=6的范围内

小技巧:

这里用二进制数01来表示所有灯亮或没亮,位运算操作会很多,代码注释详解

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 10;
char g[N][N],backup[N][N];

void turn(int x,int y)
{
    int dx[5] = {0, -1, 0, 1, 0}, dy[5] = {0, 0, 1, 0, -1};
    //定义五个方向偏移量
    for(int i=0;i<5;i++)
    {
        int a=x+dx[i],b=y+dy[i];
        if(a>=0&&a<5&&b>=0&&b<5)
        {
            g[a][b]^=1;
            //因为'0'的ascall码值为48 --二进制110000
            //'1'的ascall码值为49--二进制110001
            //就差结尾的1和0,进行异或运算,结尾1变0,0变1即可
        }
    }
}

int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        for(int i=0;i<5;i++) cin>>g[i];
        
        int res=10;//取一个大于6的数即可,存储所有方案中的最小步骤数
        
        for(int op=0;op<32;op++)//对应对第一行进行32种不同的操作
        {
            memcpy(backup,g,sizeof g);//保存g的初始状态,进行下一次操作的时候又是对初始状态操作
            int cnt=0;
            for(int i=0;i<5;i++)
            {
                if(op>>i & 1)//假设从右向左第1个数是第0位,这里就是看看第i位上是不是1,是1就进行一次按灯操作
                {
                    cnt++;
                    turn(0,i);
                }
            }
            for(int i=0;i<4;i++)//枚举前四行,每行状态决定下一行哪里需要按灯
            {
                for(int j=0;j<5;j++)
                {
                    if(g[i][j]=='0')
                    {
                        cnt++;
                        turn(i+1,j);
                    }
                }
            }
            bool flag=true;//看看是否成功
            for(int i=0;i<5;i++)//第五行存在为0的,就说明没有全部点亮
            {
                if(g[4][i]=='0')
                {
                    flag=false;
                    break;
                }
            }
            if(flag) res=min(res,cnt);
            memcpy(g,backup,sizeof backup);//恢复原来的g
        }
        if(res>6) cout<<"-1"<<endl;
        else cout<<res<<endl;
    }
    return 0;
}

5.递归实现组合型枚举

比起排列型枚举,多了一个判断一下是否比前一个数大的过程,并且位置的个数变成了m而不再是n

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;//从n个数中选m个,从小到大放在m个位置上
const int N = 25;
int a[N];
int st[N];
void dfs(int u)//枚举每个位置填哪个数
{
    if(u>m)
    {
        for(int i=1;i<=m;i++)
        {
            cout<<a[i]<<" ";
        }
        cout<<endl;
        return;
    }
    for(int i=1;i<=n;i++)
    {
        if(!st[i]&&i>a[u-1])
        {
            a[u]=i;
            st[i]=true;
            dfs(u+1);
            a[u]=0;
            st[i]=false;
        }
    }
}
int main()
{
    cin>>n>>m;
    dfs(1);
    return 0;
}

6.带分数 

1209. 带分数 - AcWing题库

法1:


n=a+b/c
爆搜:
枚举1-9的全排列,然后划分成三个部分计算a,b,c,看看n*c与a*c+b的关系

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
int cnt;//统计最后有多少个满足题意的数
int num[10];//存每个位置上放哪些数字
bool st[10];//判断每个数是否被用过
int calc(int l,int r)
{
    int res=0;
    for(int i=l;i<=r;i++)
    {
        res=res*10+num[i];
    }
    return res;
}
void dfs(int u)
{
    if(u>9)
    {
        //第一个数范围是num[1,7],第二个数范围是num[2,8],第三个数范围是num[3,9]
        for(int i=1;i<=7;i++)
        {
            for(int j=i+1;j<=8;j++)
            {
                int a=calc(1,i);
                int b=calc(i+1,j);
                int c=calc(j+1,9);
                if(n*c==a*c+b) cnt++;
            }
        }
        return;
    }
    for(int i=1;i<=9;i++)
    {
        if(!st[i])
        {
            st[i]=true;
            num[u]=i;
            dfs(u+1);
            //恢复现场
            st[i]=false;
            num[u]=0;
        }
    }
}
int main()
{
    cin>>n;
    dfs(1);
    cout<<cnt<<endl;
    return 0;
}

法2: 

 n=a+b/c
n*c-a*c==b
法2:
枚举a dfs_a
枚举c dfs_c//与dfs_a是嵌套关系,每次dfs_a的时候,看看从当前a出发,dfs_c能不能得到合法结果
判断b是否成立,将记录已经用过的所有数字i的数组st[]备份到backup里面
再把b分解一下,看看最终是不是包含1-9

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
int cnt;
bool st[10];
bool backup[10];
bool check(int a,int c)
{
    long long b=n*(long long)c-a*c;
    
    if(!a||!b||!c) return false;
    
    memcpy(backup,st,sizeof st);
    while(b)
    {
        int x=b%10;//取出个位
        b/=10;//向右移
        if(!x||backup[x]) return false;//如果出现0或者1-9中有元素重复出现
        backup[x]=true;
    }
    
    for(int i=1;i<=9;i++)
    {
        if(!backup[i]) return false;//1-9中有数字没出现过
    }
    return true;
}
void dfs_c(int u,int a,int c)
{
    if(u>9) return;
    
    if(check(a,c)) cnt++;
    
    for(int i=1;i<=9;i++)
    {
        if(!st[i])
        {
            st[i]=true;
            dfs_c(u+1,a,c*10+i);
            st[i]=false;
        }
    }
}
void dfs_a(int u,int a)
{
    if(a>=n) return;
    
    if(a) dfs_c(u,a,0);//第一个参数是当前用了几个数,第二个参数是当前a的值,第三个参数是当前c的值
    
    for(int i=1;i<=9;i++)
    {
        if(!st[i])
        {
            st[i]=true;
            dfs_a(u+1,a*10+i);
            st[i]=false;
        }
    }
}
int main()
{
    cin>>n;
    dfs_a(0,0);//第一个参数是当前用了几个数,第二个参数是当前a的值是多少
    cout<<cnt<<endl;
    return 0;
}

7.飞行员兄弟

116. 飞行员兄弟 - AcWing题库

与费解的开关那题类似
但本题由于1<<16不是很大,所以可以直接枚举对4*4中每个把手进行开或关的操作即可

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
char g[5][5],backup[5][5];
typedef pair<int, int> PII;

int get(int i,int j)//返回二维数组在一维数组中的下标
{
    return 4*i+j;
}

void turn(int x,int y)
{
    for(int i=0;i<4;i++)//(x,y)同行同列全按一下
    {
        if(g[x][i]=='+') g[x][i]='-';
        else g[x][i]='+';
        if(g[i][y]=='+') g[i][y]='-';
        else g[i][y]='+';
    }
    if(g[x][y]=='+') g[x][y]='-';
    else g[x][y]='+';//(x,y)这个点被多按了一下,按回去
}
int main()
{
    for(int i=0;i<4;i++) cin>>g[i];
    
    vector<PII> res;
    for(int op=0;op< 1<<16;op++)
    {
        vector<PII> step;
        memcpy(backup,g,sizeof g);//因为每次op操作都是对g[][]进行操作,所以要备个份
        
        for(int i=0;i<4;i++)
        {
            for(int j=0;j<4;j++)
            {
                if(op>>get(i,j) & 1)//1的位置说明要操作,0的位置说明不用操作
                {
                    turn(i,j);
                    step.push_back({i,j});
                }
            }
        }
        
        bool flag=true;
        for(int i=0;i<4;i++)
        {
            for(int j=0;j<4;j++)
            {
                if(g[i][j]=='+') //存在门把手是闭合的,说明枚举到的op操作不合法
                {
                    flag=false;
                    break;
                }
            }
        }
        if(flag==true)
        {
            if(res.size()>step.size()||res.empty()) res=step;
            //当前结果的步骤数小于原来的步骤数,则可以更新
            //或者当前还没有结果,step是第一个结果
        }
        memcpy(g,backup,sizeof backup);
    }
    cout<<res.size()<<endl;
    for(int i=0;i<res.size();i++)
    {
        cout<<res[i].first+1<<" "<<res[i].second+1<<endl;
    }
    return 0;
}

8.翻硬币

1208. 翻硬币 - AcWing题库

10个位置,用9个开关控制
从左向右,第一个位置得和目标状态相同,且第一个位置只能由第一个开关控制
所以第一个开关的开和关的状态是确定的,由于第一个开关开和关确定,
所以第二个位置也只有第二个开关控制

从最左侧开始遍历,如果该位置硬币状态与目标不同,就翻动该位置和该位置后面的两枚硬币。
因为题目说了有解,所以遍历到倒数第二枚的时候,所有硬币状态就与目标相同了。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int cnt;
string a,b;
void turn(int i)
{
    if(a[i]=='*') a[i]='o';
    else a[i]='*';
}
int main()
{
    cin>>a>>b;
    for(int i=0;i<a.size();i++)
    {
        if(a[i]!=b[i])
        {
            turn(i);
            turn(i+1);
            cnt++;
        }
    }
    cout<<cnt<<endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值