AI浏览器BrowserUse:安装与配置(四)

概述

在前一篇文章中,我们讨论了 AI 浏览器的基本概念以及如何利用 Browser Use 项目构建智能浏览器。现在,我们进入了安装和配置的环节。在这一篇文章中,我们将详细介绍如何安装 Browser Use Web UI 项目,配置环境,启动本地开发服务器,并测试浏览器自动化功能。Browser Use Web UI 使得与浏览器代理的交互变得更加简单和直观。通过 Gradio 提供的图形化界面,你可以轻松设置并运行各种任务。本篇文章将指导你通过本地安装的安装方式来配置 Web UI,并运行你的智能代理。

本地安装

2.1 环境准备
  • 需要python和git,具体安装方式我们已经在上一篇文档中进行了详细的说明,如有疑问,可参照进行处理。
    • Python 3.11 or higher
    • Git (for cloning the repository)

2.2 拉取项目
  • 需要从github拉取项目代码到本地。
git clone https://github.com/browser-use/web-ui.git
cd web-ui
2.3 安装
  • 进入项目目录后,使用虚拟环境管理工具安装 python 3.11。
  • 执行命令进入3.11 环境。
  • 依据项目中requirements.txt,安装项目运行所需要依赖的所有软件包。
  • 安装playwright,官方资料直连
uv venv --python 3.11
source .venv/bin/activate
uv pip install -r requirements.txt
playwright install

运行项目

3.1 运行参数
  • --ip:绑定 WebUI 的 IP 地址。默认值是 127.0.0.1
  • --port:绑定 WebUI 的端口。默认值是 7788
  • --theme:用户界面的主题。默认值是 Ocean
    • Default:标准主题,设计平衡。
    • Soft:温和、柔和的配色方案,提供放松的观赏体验。
    • Monochrome:灰度主题,色彩最少,追求简约和专注。
    • Glass:现代外观的半透明设计。
    • Origin:经典复古风格的主题,带有怀旧气息。
    • Citrus:充满活力的柑橘色调,明亮和清新的颜色。
    • Ocean(默认):蓝色海洋主题,带来平静的效果。
  • --dark-mode:启用深色模式的用户界面。
3.2 启动项目。
python webui.py --ip 127.0.0.1 --port 7788

  • 打开浏览器,输入127.0.0.1:7788。

总结

到此为止,你已经成功安装并配置了 Browser Use Web UI,并能够通过 Web UI 与浏览器代理进行交互。通过本地安装或 Docker 安装方式,你可以轻松启动智能浏览器并开始运行各种 AI 自动化任务。

在接下来的文章中,我们将进一步探讨如何调试和优化 AI 浏览器,确保其在实际应用中的高效运行。如果你在安装过程中遇到任何问题,欢迎在评论区提问,我们会尽快为你解答。

pip install vtx -i https://pypi.tuna.tsinghua.edu.cn/simple Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting vtx Using cached https://pypi.tuna.tsinghua.edu.cn/packages/f7/54/83bf194abc3d8a384caf1b10ca25789412176e9460555b531b48d2ac7fa5/vtx-1.0.1.tar.gz (26.4 MB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [27 lines of output] <string>:22: UserWarning: CUDA_HOME is not set; NVCC may not be available. Traceback (most recent call last): File "/home/share/huadjyin/home/chenjunhong/.conda/envs/evo2/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 389, in <module> main() File "/home/share/huadjyin/home/chenjunhong/.conda/envs/evo2/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/share/huadjyin/home/chenjunhong/.conda/envs/evo2/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) ^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-zgy_zekf/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-zgy_zekf/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 304, in _get_build_requires self.run_setup() File "/tmp/pip-build-env-zgy_zekf/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 320, in run_setup exec(code, locals()) File "<string>", line 61, in <module> File "/tmp/pip-build-env-zgy_zekf/overlay/lib/python3.11/site-packages/torch/utils/cpp_extension.py", line 1130, in CUDAExtension library_dirs += library_paths(device_type="cuda") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-zgy_zekf/overlay/lib/python3.11/site-packages/torch/utils/cpp_extension.py", line 1264, in library_paths if (not os.path.exists(_join_cuda_home(lib_dir)) and ^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-zgy_zekf/overlay/lib/python3.11/site-packages/torch/utils/cpp_extension.py", line 2525, in _join_cuda_home raise OSError('CUDA_HOME environment variable is not set. ' OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip.
04-02
<think>嗯,用户遇到了安装vtx包时出现的错误,我需要仔细看一下错误信息。首先,用户执行的是pip install vtx,并且指定了清华的镜像源。错误信息显示在构建wheel时获取依赖失败,退出码是1。主要的错误信息是CUDA_HOME环境变量未设置,导致NVCC可能不可用。 那我得想,这个vtx包可能是一个需要CUDA支持的Python库,可能涉及到PyTorch的CUDA扩展。错误发生在安装过程中需要编译的部分,可能是因为vtx依赖某些CUDA代码,而系统没有正确配置CUDA环境。 接下来,我需要考虑用户可能的系统环境。用户可能是在Linux系统下,使用了conda环境。错误日志中的路径显示是/home/share/.../.conda/envs/evo2,说明用户可能是在一个conda环境中安装,但该环境中没有正确设置CUDA_HOME。 可能的解决步骤是: 1. 确认CUDA是否安装。用户需要检查是否已经安装了CUDA工具包。可以通过运行nvcc --version或者检查/usr/local/cuda目录是否存在来确定。 2. 设置CUDA_HOME环境变量。如果CUDA已经安装但环境变量未设置,用户需要导出CUDA_HOME,比如export CUDA_HOME=/usr/local/cuda,并将其添加到bashrc或zshrc中。 3. 确保安装了正确版本的PyTorch。可能需要PyTorchCUDA版本兼容,用户需要根据CUDA版本安装对应的PyTorch,比如通过conda或pip安装。 4. 安装必要的构建工具,如gcc、g++、make等,以及Python的开发头文件。有时候缺少这些工具会导致编译失败。 5. 如果用户不需要GPU支持,或者vtx包有非CUDA的版本,可以尝试安装CPU版本,但需要查看vtx的文档是否有相关选项。 另外,用户可能不太清楚vtx的具体用途,可能需要解释一下这个包。不过从错误信息来看,可能vtx是一个需要CUDA编译的库,比如计算机视觉或深度学习相关的工具。 用户可能的问题还包括权限问题,或者conda环境中的依赖项不完整。但根据错误信息,主要问题还是CUDA_HOME未设置。需要引导用户检查CUDA安装,并正确配置环境变量。 最后,如果上述步骤都无效,可能需要查看vtx的官方文档或GitHub仓库,看看是否有特殊的安装说明,或者是否存在已知的问题。也有可能是该包当前Python版本或系统环境不兼容,需要用户升级或降级某些组件。</think>根据你的报错信息,这是安装VTX包时出现的CUDA环境配置问题。以下是分步解决方案: --- ### **错误原因分析** 1. **CUDA依赖缺失**:VTX包需要编译CUDA扩展,但系统未检测到CUDA环境 2. **CUDA_HOME未配置**:未正确设置CUDA安装路径的环境变量 3. **PyTorch编译依赖**:可能涉及PyTorch的CUDA扩展编译 --- ### **解决步骤** #### **1. 确认CUDA是否安装** ```bash # 检查CUDA是否安装 nvcc --version # 查看是否输出CUDA版本 ls /usr/local/cuda # 检查CUDA安装目录是否存在 ``` - 如果未安装CUDA,需先安装显卡驱动匹配的CUDA工具包 #### **2. 设置CUDA环境变量** ```bash # 临时设置(仅当前终端有效) export CUDA_HOME=/usr/local/cuda # 根据实际安装路径修改 # 永久设置(写入shell配置文件) echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc source ~/.bashrc ``` #### **3. 验证CUDA配置** ```bash echo $CUDA_HOME # 应输出类似/usr/local/cuda ``` #### **4. 安装编译依赖** ```bash # 安装基础编译工具 sudo apt-get install build-essential python3-dev # 安装CUDA开发工具(如果使用NVIDIA GPU) sudo apt-get install nvidia-cuda-toolkit ``` #### **5. 尝试重新安装VTX** ```bash pip install vtx -i https://pypi.tuna.tsinghua.edu.cn/simple ``` --- ### **备选方案** 如果仍失败,可尝试: 1. 通过conda安装CUDA(自动管理依赖): ```bash conda install cuda -c nvidia ``` 2. 安装PyTorch时指定CUDA版本: ```bash pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu117 ``` --- ### **技术细节说明** - 该错误源于VTX包的`CUDAExtension`需要访问NVCC编译器 - PyTorch的C++/CUDA扩展编译需要正确配置`CUDA_HOME` - 清华镜像源仅影响包下载速度,编译错误无关 如果问题仍未解决,建议提供以下信息: 1. `nvidia-smi`输出 2. `python -c "import torch; print(torch.version.cuda)"`结果 3. 完整的错误日志文件路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

守城小轩

赐予我力量吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值