Fourier Transform(傅里叶变换)

一、傅里叶级数


周期函数f(t)可由三角函数的线性组合来表示,若f(t)的周期为 T 1 T_1 T1,角频率 w 1 = 2 π T 1 w_1=\frac{2\pi}{T_1} w1=T12π,频率 f 1 = 1 T 1 f_1=\frac{1}{T_1} f1=T11
三角函数形式:
f ( t ) = a 0 + ∑ n = 1 ∞ [ a n c o s ( n w 1 t ) + b n s i n ( n w 1 t ) ] f(t)=a_0+\sum_{n=1}^\infty[{a_n}cos(nw_1t)+b_nsin(nw_1t)] f(t)=a0+n=1[ancos(nw1t)+bnsin(nw1t)]

各次谐波的分量:
直流分量: a 0 = 1 T 1 ∫ t 0 t 0 + T 1 f ( t ) d t a_0=\frac{1}{T_1}\int_{t_0}^{t_0+T_1}{f(t)dt} a0=T11t0t0+T1f(t)dt
余弦分量的幅度: a n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) c o s ( n w 1 t ) d t a_n=\frac{2}{T_1}\int_{t_0}^{t_0+T_1}f(t)cos(nw_1t)dt an=T12t0t0+T1f(t)cos(nw1t)dt
正弦分量的幅度: b n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) s i n ( n w 1 t ) d t b_n=\frac{2}{T_1}\int_{t_0}^{t_0+T_1}f(t)sin(nw_1t)dt bn=T12t0t0+T1f(t)sin(nw1t)dt
不是所有的周期函数都能进行傅里叶级数展开,需要满足充分条件,“狄里赫利(Dirichlet)条件”:
(1)在一周期内,如果间断点存在,则间断点的数目应是有限个;
(2)在一周期内,极大值和极小值的数目应是有限个;
(3)在一周期内,信号是绝对可积得,即 ∫ t 0 t 0 + T 1 ∣ f ( t ) ∣ d t \int_{t_0}^{t_0+T_1}|f(t)|dt t0t0+T1f(t)dt等于有限值( T 1 T_1 T1为周期)。
一般周期信号都能满足这一条件。

二、z变换


1、z变换
X ( z ) = ∑ n = − ∞ ∞ x ( n ) z − n X(z) = \sum_{n=-\infty}^\infty{x(n)z^{-n}} X(z)=n=x(n)zn
2、逆变换
x ( n ) = 1 2 π j ∮ c X ( z ) z n − 1 d z x(n)=\frac{1}{2{\pi}j}\oint_c{X(z)z^{n-1}dz} x(n)=2πj1cX(z)zn1dz
级数收敛的充要条件:满足绝对可和条件,即:
∑ n = − ∞ ∞ ∣ x ( n ) z − n ∣ = M < ∞ \sum_{n=-\infty}^\infty|x(n)z^{-n}|=M<\infty n=x(n)zn=M<
注:序列x(n)如果不是绝对可和的,则其z变换不存在
级数收敛性判别法(达兰贝尔判别法):
对任意求和式 ∑ n = − ∞ ∞ ∣ a n ∣ \sum_{n=-\infty}^\infty|a_n| n=an(例如,这里的 ∑ n = − ∞ ∞ ∣ x ( n ) z − n ∣ \sum_{n=-\infty}^\infty|x(n)z^{-n}| n=x(n)zn),有
l i m n → ∞ ∣ a n + 1 a n ∣ = l lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|=l limnanan+1=l
l<1,级数收敛
l>1,级数发散
l=1,不能确定
3、常见性质和定理

详细请看书籍

性质或定理 序列 z变换
线性 $ax(n)+bh(x)$ $aX(z)+bH(z)$
序列移位 $x(n-m)$ $z^{-m}X(z)$
乘指数序列 $a^nx(n)$ $X(\frac{z}{a})$
时域卷积定理 $x(n)*h(n)$ $X(z)H(z)$
z域复卷积定理 $x(n)h(n)$ $\frac{1}{2\pi i}\oint_cX(v)H(\frac{z}{v})v^{-1}$

三、离散时间傅里叶变换(DTFT)


X ( e j w ) = D T F T [ x ( n ) ] = ∑ n = − ∞ ∞ x ( n ) e − j w n X(e^{jw}) = DTFT[x(n)] = \sum_{n=-\infty}^{\infty}x(n)e^{-jwn} X(ejw)=DTFT[x(n)]=n=x(n)ejwn
x ( n ) = I D T F T [ X ( e j w ) ] = 1 2 π ∫ − π π X ( e j w ) d w x(n) = IDTFT[X(e^{jw}) ] = \frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})dw x(n)=IDTFT[X(ejw)]=2π1ππX(ejw)dw
注:
1、时域x(n)是离散的,则频域 X ( e j w ) X(e^{jw}) X(ejw)一定时周期的
2、 X ( e j w n ) X(e^{jwn}) X(ejwn)是序列x(n)的频谱密度,简称频谱。可分解为模和相位或实部和虚部如下
X ( e j w ) = ∣ X ( e j w ) ∣ e j a r g [ X ( e j w ) ] = R e [ X ( e j w ) ] + j I m [ X ( e j w ) ] X(e^{jw})=|X(e^{jw})|e^{jarg[X(e^{jw})]}=Re[X(e^{jw})]+jIm[X(e^{jw})] X(ejw)=X(ejw)ejarg[X(ejw)]=Re[X(ejw)]+jIm[X(ejw)]

四、周期序列的傅里级数(DFS)


x ~ ( n ) \widetilde{x}(n) x (n)表示一个周期为N的周期序列,即
x ~ ( n ) = x ~ ( n + r N ) \widetilde{x}(n) = \widetilde{x}(n+rN) x (n)=x (n+rN)
N为正整数,r为任意整数。
X ~ ( k ) = D F S [ x ~ ( n ) ] = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N n k = ∑ n = 0 N − 1 x ~ ( n ) W N n k \widetilde{X}(k)=DFS[\widetilde{x}(n)]=\sum_{n=0}^{N-1}\widetilde{x}(n)e^{-j\frac{2\pi}{N}nk}=\sum_{n=0}^{N-1}\widetilde{x}(n)W_N^{nk} X (k)=DFS[x (n)]=n=0N1x (n)ejN2πnk=n=0N1x (n)WNnk
x ~ ( n ) = I D F S [ X ~ ( k ) ] = 1 N ∑ k = 0 N − 1 X ~ ( k ) e j 2 π N n k = 1 N ∑ k = 0 N − 1 X ~ ( k ) W N − n k \widetilde{x}(n)=IDFS[\widetilde{X}(k)]=\frac{1}{N}\sum_{k=0}^{N-1}\widetilde{X}(k)e^{j\frac{2\pi}{N}nk}=\frac{1}{N}\sum_{k=0}^{N-1}\widetilde{X}(k)W_N^{-nk} x (n)=IDFS[X (k)]=N1k=0N1X (k)ejN2πnk=N1k=0N1X (k)WNnk

基频序列(信号) 周期 基频 k次谐波序列
连续周期 $e^{j\Omega_0t}=e^{j\frac{2\pi}{T_0}t}$ $T_0$ $\Omega_0={\frac{2\pi}{T_0}}$ $e^{jk\frac{2\pi}{T_0}t}$
离散周期 $e^{j\Omega_0n}=e^{j\frac{2\pi}{N}n}$ $N$ $\omega_0={\frac{2\pi}{N}}$ $e^{jk\frac{2\pi}{N}n}$
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值