矩阵分析与应用(一)——集合的基本运算和内积空间

矩阵相关

  幂等矩阵:对于方阵 A ,如果A2=A,则称为幂等矩阵
  对合矩阵:对于方阵 A ,如果A2=I,则称为对合矩阵
  非奇异矩阵:一个方阵 A 是非奇异的,当且仅当Ax=0只有零解,即 A 的n个列向量线性无关。
  行等价矩阵:经过行初等变换的矩阵与原矩阵是行等价矩阵。
  简约阶梯型矩阵:如果一个阶梯矩阵每个非零行的首项元素为1(首一元素),则称为简介阶梯型

集合的基本运算

AB={xX:xA or xB}

AB={xX:xA and xB}
A+B={z=x+yZ:xA , xB}
X=AB={xX:xA and xB}

集合 A X中的补集: Ac=XA={xX:xA}
笛卡尔积:若 X Y为集合,且 xXyY ,则所有的有序数对 (x,y) 的集合记为 X×Y ,称为集合的笛卡尔积:
X×Y={(x,y):xX,yY}

向量空间

  以向量为元素的集合 V 称为向量空间,它满足加法标量乘法的闭合性,即:

xV,yVx+yV

aR,yVayV

实内积空间

  实内积空间是满足下列条件的实向量空间 E

xE,and x0,x,x>0

x,yE,x,y=y,x
x,y+z=x,y+x,z,x,y,zE
αx,y=αx,yx,yEαR

  如果在一个 n 阶实内积空间Rn定义典范内积(cannonical inner product)为:
x,y=i=1nxiyi

  则称 Rn n 阶Euclidean空间。

范数

  若Rn为一个实内积空间,且 xEn ,则 x 的范数(或“长度”)记为x,定义为:

x=x,x1/2

  长度为1的向量称为单位向量。
  向量 x,y 之间的距离定义为:
d=xy=xy,xy1/2

  特别地,对于Euclidean n空间,向量范数取:
x2=a21+a22+...+a2n

  在实内积空间中,范数具有以下性质:
    1.只有0向量的范数为0,否则大于0。
    2. xRn,cRcx=|c|x
    3.服从极化恒等式(polarization identity):

x,y=14(x+y2xy2)
    4.满足平行四边形法则(parallelogram law):
x+y2+xy2=2x2+2y2
    5.服从Cauchy-Schwartz不等式:
|x,y|xyy=cxcR0
    5.满足三角不等式:
x+yxy

复内积空间

  即同样满足上述定理的复向量空间 Cn 构成复内积空间,有些在表达形式上有所不同:

xE,and x0,x,x>0
Heimitianx,yE,x,y=y,x
x,y+z=x,y+x,z,x,y,zE
αx,y=αx,yx,yEαC

范数

  在复内积空间中,范数具有以下性质:
    1.只有0向量的范数为0,否则大于0。
    2. xRn,cCcx=|c|x|c|c
    3.服从极化恒等式(polarization identity):

x,y=14(x+y2xy2jx+jy2+jxjy2)
    4.满足平行四边形法则(parallelogram law):
x+y2+xy2=2x2+2y2
    5.服从Cauchy-Schwartz不等式:
|x,y|xyy=cxcC
    5.满足三角不等式:
x+yxy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值