矩阵相关
幂等矩阵:对于方阵
A
,如果A2=A,则称为幂等矩阵
对合矩阵:对于方阵
A
,如果A2=I,则称为对合矩阵
非奇异矩阵:一个方阵
A
是非奇异的,当且仅当Ax=0只有零解,即
A
的n个列向量线性无关。
行等价矩阵:经过行初等变换的矩阵与原矩阵是行等价矩阵。
简约阶梯型矩阵:如果一个阶梯矩阵每个非零行的首项元素为1(首一元素),则称为简介阶梯型
集合的基本运算
A∪B={x∈X:x∈A or x∈B}
A∩B={x∈X:x∈A and x∈B}
A+B={z=x+y∈Z:x∈A , x∈B}
X=A−B={x∈X:x∈A and x∉B}
集合
A
在
X中的补集:
Ac=X−A={x∈X:x∉A}
笛卡尔积:若
X
和
Y为集合,且
x∈X,y∈Y
,则所有的有序数对
(x,y)
的集合记为
X×Y
,称为集合的笛卡尔积:
X×Y={(x,y):x∈X,y∈Y}
向量空间
以向量为元素的集合
V
称为向量空间,它满足加法和标量乘法的闭合性,即:
∀x∈V,y∈V→x+y∈V
∀a∈R,y∈V→ay∈V
实内积空间
实内积空间是满足下列条件的实向量空间
E
:
正定性:∀x∈E,and x≠0,⟨x,x⟩>0
对称性:∀x,y∈E,⟨x,y⟩=⟨y,x⟩
⟨x,y+z⟩=⟨x,y⟩+⟨x,z⟩,∀x,y,z∈E
⟨αx,y⟩=α⟨x,y⟩∀x,y∈E,α∈R
如果在一个
n
阶实内积空间
Rn定义典范内积(cannonical inner product)为:
⟨x,y⟩=∑i=1nxiyi
则称
Rn
为
n
阶Euclidean空间。
范数
若Rn为一个实内积空间,且
x∈En
,则
x
的范数(或“长度”)记为∥x∥,定义为:
∥x∥=⟨x,x⟩1/2
长度为1的向量称为单位向量。
向量
x,y
之间的距离定义为:
d=∥x−y∥=⟨x−y,x−y⟩1/2
特别地,对于Euclidean n空间,向量范数取:
∥x∥2=a21+a22+...+a2n−−−−−−−−−−−−−√
在实内积空间中,范数具有以下性质:
1.只有0向量的范数为0,否则大于0。
2.
∀x∈Rn,c∈R,∥cx∥=|c|∥x∥
3.服从极化恒等式(polarization identity):
⟨x,y⟩=14(∥x+y∥2−∥x−y∥2)
4.满足平行四边形法则(parallelogram law):
∥x+y∥2+∥x−y∥2=2∥x∥2+2∥y∥2
5.服从Cauchy-Schwartz不等式:
|⟨x,y⟩|≤∥x∥∥y∥,当且仅当y=cx时,等号成立,c∈R≠0
5.满足三角不等式:
∥x+y∥≤∥x∥∥y∥
复内积空间
即同样满足上述定理的复向量空间
Cn
构成复内积空间,有些在表达形式上有所不同:
正定性:∀x∈E,and x≠0,⟨x,x⟩>0
共轭对称性(Heimitian性):∀x,y∈E,⟨x,y⟩∗=⟨y,x⟩
⟨x,y+z⟩=⟨x,y⟩+⟨x,z⟩,∀x,y,z∈E
⟨αx,y⟩=α∗⟨x,y⟩∀x,y∈E,α∈C
范数
在复内积空间中,范数具有以下性质:
1.只有0向量的范数为0,否则大于0。
2.
∀x∈Rn,c∈C,∥cx∥=|c|∥x∥,|c|表示复数c的模
3.服从极化恒等式(polarization identity):
⟨x,y⟩=14(∥x+y∥2−∥x−y∥2−j∥x+jy∥2+j∥x−jy∥2)
4.满足平行四边形法则(parallelogram law):
∥x+y∥2+∥x−y∥2=2∥x∥2+2∥y∥2
5.服从Cauchy-Schwartz不等式:
|⟨x,y⟩|≤∥x∥∥y∥,当且仅当y=cx时,等号成立,c∈C
5.满足三角不等式:
∥x+y∥≤∥x∥∥y∥