pandas中的类连接操作

类连接操作

比较

compare() 函数

代码实战:

import pandas as pd

df1 = pd.DataFrame({'Name':['San Zhang', 'Si Li', 'Wu Wang'],
                    'Age':[20, 21 ,21],
                    'Class':['one', 'two', 'three']})
df2 = pd.DataFrame({'Name':['San Zhang', 'Li Si', 'Wu Wang'],
                    'Age':[20, 21 ,21],
                    'Class':['one', 'two', 'Three']})
df1.compare(df2)

运行代码:

    Name         Class       
    self  other   self  other
1  Si Li  Li Si    NaN    NaN
2    NaN    NaN  three  Three

结果中返回了不同值所在的行列,如果相同则会被填充为缺失值NaN,其中other和self分别指代传入的参数表和被调用的表自身。

组合

combine() 函数 能够让两张表按照一定的规则进行组合,在进行规则比较时会自动进行列索引的对齐。

代码实战:

import pandas as pd

def choose_min(s1, s2):
    s2 = s2.reindex_like(s1)
    res = s1.where(s1<s2, s2)
    res = res.mask(s1.isna()) # isna表示是否为缺失值,返回布尔序列
    return res
df1 = pd.DataFrame({'A':[1,2], 'B':[3,4], 'C':[5,6]})
df2 = pd.DataFrame({'B':[5,6], 'C':[7,8], 'D':[9,10]}, index=[1,2])
df1.combine(df2, choose_min)

运行结果:

    A    B    C   D
0 NaN  NaN  NaN NaN
1 NaN  4.0  6.0 NaN
2 NaN  NaN  NaN NaN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值