比较
compare() 函数
代码实战:
import pandas as pd
df1 = pd.DataFrame({'Name':['San Zhang', 'Si Li', 'Wu Wang'],
'Age':[20, 21 ,21],
'Class':['one', 'two', 'three']})
df2 = pd.DataFrame({'Name':['San Zhang', 'Li Si', 'Wu Wang'],
'Age':[20, 21 ,21],
'Class':['one', 'two', 'Three']})
df1.compare(df2)
运行代码:
Name Class
self other self other
1 Si Li Li Si NaN NaN
2 NaN NaN three Three
结果中返回了不同值所在的行列,如果相同则会被填充为缺失值NaN,其中other和self分别指代传入的参数表和被调用的表自身。
组合
combine() 函数 能够让两张表按照一定的规则进行组合,在进行规则比较时会自动进行列索引的对齐。
代码实战:
import pandas as pd
def choose_min(s1, s2):
s2 = s2.reindex_like(s1)
res = s1.where(s1<s2, s2)
res = res.mask(s1.isna()) # isna表示是否为缺失值,返回布尔序列
return res
df1 = pd.DataFrame({'A':[1,2], 'B':[3,4], 'C':[5,6]})
df2 = pd.DataFrame({'B':[5,6], 'C':[7,8], 'D':[9,10]}, index=[1,2])
df1.combine(df2, choose_min)
运行结果:
A B C D
0 NaN NaN NaN NaN
1 NaN 4.0 6.0 NaN
2 NaN NaN NaN NaN