《凑硬币》 动态规划算法入门

本文介绍了使用动态规划算法解决凑硬币问题,以1元、3元和5元硬币为例,求解凑够11元的最少硬币数。动态规划核心在于状态和状态转移方程,如dp[i]表示凑够i元所需的最少硬币数。文章通过递归和循环两种方式展示了代码实现。
摘要由CSDN通过智能技术生成

题目描述

如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元?

思路问题

这是博客http://hawstein.com/posts/dp-novice-to-advanced.html上面的一个入门的小例子。

动态规划算法的核心是:每个子问题的状态和状态的转移方程。

状态是:dp[i] ,即凑够i元最少需要的硬币的个数

转移方程是:dp[i] = min(dp[i-C1]+1,dp[i-C2]+1,dp[i-C3]+1,……,dp[i-Cj]+1])

即,每个状态的值都是最小的那个。

编写代码

说明:通过递归函数dp_fun实现了对状态数组dp的初始化

#include<iostream>
using namespace std;
int coin[3] = {1,3,5}; 
int dp[12] ;
int min(int a,int b)
{
	return (a<b)? a:b;
}
void dp_fun(int i,int num)
{
	if(i == 0)
	{
		dp[i] = 0;
		dp_fun(1,num);
		return;
	}
	else
	{
		int MIN = 9999;
		for(int j=0;j<3;j++)
		{
			if(i>=coin[j])
			{
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值