题目:几年教师节活动中,公司里为培训讲师提供了不同面值的饮料兑换券(每种面值数量不限),培训讲师可以领取兑换券去食堂兑换鲜榨果汁,要求兑换券和果汁必须等价,姜小虎想要兑换一杯果汁,计算它最少要领取几张兑换券,如果无法兑换返回-1.
输入描述:第一行:兑换券的面值种类(种类>0) 第二行:数组,代表兑换券面值(面值>0) 第三行:一个整数,代表饮料的价值(饮料的价值>0)
输出描述:对于每个测试用例,要求输出最少兑换券张数
这是我在做完美公司笔试的时候遇到的编程题,我自身对动态规划不是很熟悉,当时这道题的数据通过率很低,笔试结束后又重新看了这道题,发现这是一道很经典的凑硬币题,但是有一些细微的点需要注意。
import java.util.Scanner;
/**
* 动态规划
* @author Rose
*
*/
public class Main {
static int[] dp;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
//面值种类
int n = in.nextInt();
int[] money = new int[n];
for (int i = 0; i < n; i++) {
money[i] = in.nextInt();
}
//饮料价值
int value = in.nextInt();
dp = new int[value+1];
getMinCount(money, value, 0);
if(dp[value] == Integer.MAX_VALUE - 1) //第一处:无法兑换
System.out.println(-1);
else
System.out.println(dp[value]);//可以兑换
}
private static int min(int a, int b){
return a>b?b:a;
}
private static void getMinCount(int[] money, int value, int i){
if(i <= value){//第二处:边界限制
if(i == 0){//第三处:当i = 0
dp[i] = 0;
getMinCount(money, value, i+1);
return;
}else{
int min = Integer.MAX_VALUE - 1;
for (int j = 0; j < money.length; j++) {
if(i >= money[j])
min = min(dp[i-money[j]] + 1, min);
}
dp[i] = min;
if(i == value)
return;
else
getMinCount(money, value, i+1);
}
}
}
}
上述代码中第一处:代码中为每一个dp[i]都初始化为Integer.MAX_VALUE-1,若经过递归后dp[i]的值还是Integer.MAX_VALUE-1,说明该价值的饮料无法兑换
上述代码第二处:如果不加这个限制,当value = 0时会报错,原因是i= 0时为dp[0]赋值之后转入下一层递归,此时i=1,数组越界
上述代码第三处:当i= 0时要单独赋值