动态规划凑硬币

题目:几年教师节活动中,公司里为培训讲师提供了不同面值的饮料兑换券(每种面值数量不限),培训讲师可以领取兑换券去食堂兑换鲜榨果汁,要求兑换券和果汁必须等价,姜小虎想要兑换一杯果汁,计算它最少要领取几张兑换券,如果无法兑换返回-1.

输入描述:第一行:兑换券的面值种类(种类>0) 第二行:数组,代表兑换券面值(面值>0) 第三行:一个整数,代表饮料的价值(饮料的价值>0)

输出描述:对于每个测试用例,要求输出最少兑换券张数

这是我在做完美公司笔试的时候遇到的编程题,我自身对动态规划不是很熟悉,当时这道题的数据通过率很低,笔试结束后又重新看了这道题,发现这是一道很经典的凑硬币题,但是有一些细微的点需要注意。

import java.util.Scanner;
/**
 * 动态规划
 * @author Rose
 *
 */
public class Main {
    static int[] dp;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        //面值种类
        int n = in.nextInt();
        int[] money = new int[n];

        for (int i = 0; i < n; i++) {
            money[i] = in.nextInt();
        }
        //饮料价值
        int value = in.nextInt();
        dp = new int[value+1];
        getMinCount(money, value, 0);
        if(dp[value] == Integer.MAX_VALUE - 1)  //第一处:无法兑换
            System.out.println(-1);
        else
            System.out.println(dp[value]);//可以兑换
    }
    private static int min(int a, int b){
        return a>b?b:a;
    }
    private static void getMinCount(int[] money, int value, int i){
        if(i <= value){//第二处:边界限制
            if(i == 0){//第三处:当i = 0
                dp[i] = 0;
                getMinCount(money, value, i+1);
                return;
            }else{
                int min = Integer.MAX_VALUE - 1;
                for (int j = 0; j < money.length; j++) {
                    if(i >= money[j])
                        min = min(dp[i-money[j]] + 1, min);
                }
                dp[i] = min;
                if(i == value)
                    return;
                else
                    getMinCount(money, value, i+1);

            }
        }

    }
}

上述代码中第一处:代码中为每一个dp[i]都初始化为Integer.MAX_VALUE-1,若经过递归后dp[i]的值还是Integer.MAX_VALUE-1,说明该价值的饮料无法兑换

上述代码第二处:如果不加这个限制,当value = 0时会报错,原因是i= 0时为dp[0]赋值之后转入下一层递归,此时i=1,数组越界

上述代码第三处:当i= 0时要单独赋值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值