https://leetcode-cn.com/problems/find-pivot-index/
给定一个整数类型的数组 nums,请编写一个能够返回数组“中心索引”的方法。
我们是这样定义数组中心索引的:数组中心索引的左侧所有元素相加的和等于右侧所有元素相加的和。
如果数组不存在中心索引,那么我们应该返回 -1。如果数组有多个中心索引,那么我们应该返回最靠近左边的那一个。
示例
输入:
nums = [1, 7, 3, 6, 5, 6]
输出: 3
解释:
索引3 (nums[3] = 6) 的左侧数之和(1 + 7 + 3 = 11),与右侧数之和(5 + 6 = 11)相等。
同时, 3 也是第一个符合要求的中心索引。
方法一:暴力遍历
遍历数组,然后再套一层遍历,从前往后遍历左边的值,从后往前遍历右边的值,如果相等则说明找到了
class Solution {
public int pivotIndex(int[] nums) {
for (int i = 0; i < nums.length; i++) {
int left = 0;
int right = 0;
for (int j = 0; j < i; j++) {
left += nums[j];
}
for (int j = nums.length - 1; j > i; j--) {
right += nums[j];
}
if (left == right){
return i;
}
}
return -1;
}
}
时间复杂度为:O(N^2)
空间复杂度为:O(N)
方法二:前缀和(leetcode官方解答)
其实和方法一是差不多的,也是遍历数组,然后在遍历的时候判断左边的值是否等于右边的值
leftsum == sum - num[i] - leftsum
class Solution {
public int pivotIndex(int[] nums) {
int sum = 0;
int leftSum = 0;
for(int x : nums){
sum += x;
}
for(int i = 0;i < nums.length;i++){
if(leftSum == (sum - nums[i] -leftSum)){
return i;
}
leftSum += nums[i];
}
return -1;
}
}
因为先把数组的和求了出来
所以时间复杂度为:O(N)