基数排序

本文深入解析基数排序算法,一种稳定的排序方法,其时间复杂度为O(n+m)。文章详细介绍了基数排序的基本思想,通过将关键码分解为多个子关键码,并使用分配和收集操作进行排序。文中还提供了详细的伪代码,帮助读者理解基数排序的具体实现。
摘要由CSDN通过智能技术生成
基数排序

是一种稳定的排序方法,时间复杂度为 O(n + m)。

基本思想:

​ 将关键码看成由若干个子关键码复合而成,然后借助分配和收集操作采用LSD方法进行排序。

代码:
struct  Node  //定义静态链表存储待排序记录序列
{
	int key[d];		//记录的键值,包括d个子关键码
	int next;			//游标,下一个键值在数组中的下标 
};

struct QueueNode
{
	int front;
	int rear;
};

void Distribute (Node r[],int n,QueueNode q[],int m,int first,int j)
{								//first为静态链表的头指针,从下标0开始存放待排序序列
	int k;
	int i = first;
	while (r[i].next != -1)
	{
		k = r[i].key[j];		//取出记录i的第j个子关键码的值
		if (q[k].front == -1)
		{
			q[k].front = i;		//处理队列为空的情况
		} 
		else
		{
			r[q[k].rear].next = i;		//在静态链表中实现插在队列尾部
		}
		q[k].rear = i;					//修改队尾指针
		i = r[i].next;					//i后移,处理下一个记录
	}
}

void Collect(Node r[],int n,QueueNode q[],int m,int first)// 收集算法
{							//first为静态链表的头指针,从下标0开始存放待排序序列
	int last;
	int k = 0;
	while (q[k].front != -1)//找到第一个非空队列
	{
		k++;
	}
	first = q[k].front;		//first为第一个记录
	last = q[k].rear;		//last为队列 K 的最后一个记录
	while (k < m)			//处理每一个静态链队列
	{
		k++;
		if (q[k].front != -1)	//第 K 个队列非空
		{
			r[last].next = q[k].front;	//将队列 K 的队头和前一个队列的队尾相接
			last = q[k].rear;			//last 为当前收集后的最后一个记录
		}
	}
	r[last].next = -1;					//在静态链表中置尾标志
}



void RadixSort(Node r[],int n,int m,int d)
{						//从下标0开始存放待排序记录,d为记录中含有子关键码的个数
	int i,j,first;
	QueueNode q[];
	for (i = 0; i < n;i++)					//初始化静态链表
	{
		r[i].next = i + 1;
	}
	r[n - 1].next = -1;
	first = 0;								//设置尾标志和头指针
	for (i = 0; i < m;i++)					//初始化m个静态队列的队头、队尾指针
	{
		q[i].front = q[i].rear = -1;
	}
	for (j = 0; j < d;j++)
	{
		Distribute(r, n, q, m, first, j);	//进行第j趟分配
		Collect(r, n, q, m, first);			//进行第j趟收集,first为头指针
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值