44、大数据流学习与儿童陪伴机器人技术探索

大数据流学习与儿童陪伴机器人技术探索

在机器学习领域,最近邻搜索在诸多方面有着重要作用,但面对高维数据时存在局限性。为解决这一问题,局部敏感哈希(LSH)提供了一种处理高维数据的替代方法。

局部敏感哈希(LSH)基础

LSH通过近似相似性搜索问题来处理高维数据。在一般哈希中,为避免冲突,每个输入被分配到不同的桶;而在LSH中,当输入数据彼此接近时,它们会被分配到相同的桶。这使得LSH能够更快地搜索相似数据,因为它可以在线性时间内找到最近邻,相比传统最近邻的二次成对方法,对高维数据和大规模数据具有优势。然而,LSH的一个主要局限性是其内存消耗大,为了保持高召回率和高精度,需要一个大的哈希表。

基于LSH的学习模型

提出了一种采用具有长期记忆的资源分配网络(RAN - LTM)主动学习算法的学习模型,其中LSH用于从大量数据中选择有用的训练数据。
- 基本思想 :传统的RAN - LTM方法基于输出裕度进行数据选择,需要为每个训练数据候选者计算输出裕度,这会增加径向基函数(RBF)单元的数量,从而增加计算时间。为避免输出裕度计算的重复,将数据划分为桶,相邻数据分组在同一桶中。结合LSH和基于裕度的方法,只有新桶中的未知数据由RAN - LTM学习,非空桶中的数据在学习阶段被忽略。此外,提出了一种局部学习算法,只选择性地学习对训练数据具有高激活的RBF基。
- LSH - 基于的数据选择
- 确定哈希函数 :构建基于LSH的数据选择的第一步是定义哈希函数,使相似数据落入同一桶。一般来说,定义的哈希函数越多,对输入空间的近

【风力涡轮发电机】用于电磁暂态(EMT)研究的第四类(即全变流器)风力发电机系统的通用模型研究(Simulink仿真实现)内容概要:本文介绍了用于电磁暂态(EMT)研究的第四类风力发电机系统(即全变流器型风力发电机)的通用仿真模型构建方法,并基于Simulink平台实现。该模型旨在准确反映全变流器风电机组在电磁暂态过程中的动态行为,涵盖其核心组成部分如风力机、发电机、全功率变流器及其控制系统,具备良好的通用性和扩展性,可用于电力系统稳定性分析、故障响应研究及可再生能源接入影响评估等场景。文中详细阐述了模型的设计原理、关键模块的实现方式及参数设置依据,通过仿真验证了模型的有效性准确性。; 适合人群:电力系统、新能源发电及相关领域的研究生、科研人员以及从事风电系统建模仿真的工程技术人员。; 使用场景及目标:①开展风电接入对电网电磁暂态特性影响的研究;②进行风电系统故障穿越能力分析控制策略验证;③作为教学科研工具,深入理解全变流器风电机组的工作机理动态响应特性; 阅读建议:建议读者结合Simulink软件动手实践,重点理解各子模块之间的接口关系控制逻辑,关注模型参数的物理意义实际工程背景,以充分发挥该通用模型在科研工程应用中的价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值