大数据流学习与儿童陪伴机器人技术探索
在机器学习领域,最近邻搜索在诸多方面有着重要作用,但面对高维数据时存在局限性。为解决这一问题,局部敏感哈希(LSH)提供了一种处理高维数据的替代方法。
局部敏感哈希(LSH)基础
LSH通过近似相似性搜索问题来处理高维数据。在一般哈希中,为避免冲突,每个输入被分配到不同的桶;而在LSH中,当输入数据彼此接近时,它们会被分配到相同的桶。这使得LSH能够更快地搜索相似数据,因为它可以在线性时间内找到最近邻,相比传统最近邻的二次成对方法,对高维数据和大规模数据具有优势。然而,LSH的一个主要局限性是其内存消耗大,为了保持高召回率和高精度,需要一个大的哈希表。
基于LSH的学习模型
提出了一种采用具有长期记忆的资源分配网络(RAN - LTM)主动学习算法的学习模型,其中LSH用于从大量数据中选择有用的训练数据。
- 基本思想 :传统的RAN - LTM方法基于输出裕度进行数据选择,需要为每个训练数据候选者计算输出裕度,这会增加径向基函数(RBF)单元的数量,从而增加计算时间。为避免输出裕度计算的重复,将数据划分为桶,相邻数据分组在同一桶中。结合LSH和基于裕度的方法,只有新桶中的未知数据由RAN - LTM学习,非空桶中的数据在学习阶段被忽略。此外,提出了一种局部学习算法,只选择性地学习对训练数据具有高激活的RBF基。
- LSH - 基于的数据选择
- 确定哈希函数 :构建基于LSH的数据选择的第一步是定义哈希函数,使相似数据落入同一桶。一般来说,定义的哈希函数越多,对输入空间的近
超级会员免费看
订阅专栏 解锁全文
1865

被折叠的 条评论
为什么被折叠?



