深度学习 | 反卷积/转置卷积 的理解 transposed conv/deconv

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/u014722627/article/details/60574260

搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里。

先来规范表达

  • 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同。
  • 记号:
     i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size,卷积/反卷积输出大小 output size,卷积/反卷积核大小 kernel size padding stride
  • 举例(如下左图):
    输入 XR(4,4)矩阵,卷积核 wR(3,3)padding=0stride=1的情况下,卷积的输出 YR(2,2),就记为 i=4,o=2,k=3,p=0,s=1

推翻错误的理解

第一次看到deconv这个词,以为deconv的结果就是卷积的逆,觉得神奇,不禁产生了“哦?转置的卷积就可以求逆了吗?”这样的想法,然后在matlab里面实验求证,我还记得当时以为反卷积能够求逆,考虑到图片进行常规卷积操作输出大小又不可能变大(same/valid),于是我还假设反卷积输出大小不变,用了same padding和原核的转置作为反卷积配置,结果发现根本不是那么一回事好吗。
其实DL中的deconv,是一种上采样过程,举个比方:输入 XR(4,4)矩阵,卷积核 wR(3,3)pad=0stride=1的情况下(如下左图),卷积的输出 YR(2,2)。对 Y进行deconv,它只能做到把还原输出大小到和 X一样大,输出值和 X有那么一点联系。
所以啊deconv这个名字相当误导人呐!这在cs231n课程里也被吐槽过,大家现在更喜欢用transposed conv来表述反卷积。为了方便起见,后文就用反卷积这个词了。

第二个容易confused的地方,就是很多文章都说卷积核的转置就可以求反卷积,又陷入迷茫“就算把卷积核转置(或者左右翻转上下翻转),卷积后输出还是越来越小(或不变,至少不会增大)啊”……直到看到文献和相应的这个动画(其他动画在github-convolution arithmetic1

卷积 $\ padding=0,stride=1$ 反卷积$\ padding=0,stride=1$
卷积  i=4,k=3,p=0,s=1, o=2 反卷积 i=2,k=3,p=0,s=1, o=4

注意图中蓝色(下面)是输入,绿色(上面)是输出,卷积和反卷积在 psk 等参数一样时,是相当于 i o 调了个位。
这里说明了反卷积的时候,是有补0的,即使人家管这叫no padding p=0),这是因为卷积的时候从蓝色 4×4 缩小为绿色 2×2,所以对应的 p=0 反卷积应该从蓝色 2×2 扩展成绿色 4×4。而且转置并不是指这个 3×3 的核 w 变为 wT,但如果将卷积计算写成矩阵乘法(在程序中,为了提高卷积操作的效率,就可以这么干,比如tensorflow中就是这种实现), Y=CX(其中 Y 表示将 Y 拉成一维向量, X 同理),那么反卷积确实可以表示为 CTY,而这样的矩阵乘法,恰恰等于 w 左右翻转再上下翻转后与补0的 Y 卷积的情况。

然后就产生了第三个confuse:“补0了会不会有影响,还能通过反卷积近似输入 X 吗?”其实反卷积也不一定能达到近似的效果,图像里的卷积,相当于一种相关操作,而反卷积维持了这种相关操作时的 w X、与 Y 之间的联系维持了。至于补0后操作是否还等价,上一段已经说明了是等价的,读者可以在阅读完后面的文章后自己尝试一下。


反卷积以及反向传播的过程

卷积和反卷积的过程在arXiv-A guide to convolution arithmetic for deep learning2写的非常详细,还有很多例子便于理解,在这里我就截图出重点来(ps.文中的figure2.1就是上图的左边)。剩下的例子请大家多看看原文,最好自己动手算一下,我也贴个我算的过程( Ci 表示矩阵 C 的第 i 行),供参考。
关于反向传播, 知乎-如何理解深度学习中的deconvolution networks3有详细的推导过程。
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述


参考资料

没有更多推荐了,返回首页