sqlplus下载及配置

oracle客户端情况下用sqlplus连接数据库:

1.去官网下载

http://www.oracle.com/technetwork/topics/winx64soft-089540.html

instantclient-basic-windows.x64-12.2.0.1.0.zip

instantclient-sqlplus-windows.x64-12.2.0.1.0.zip 

instantclient-sdk-windows.x64-12.2.0.1.0.zip

2、将上述三个文件解压到同一目录下会得到instantclient_12_2文件夹;

3、去系统环境变量里配置环境变量(我的电脑->属性->高级系统设置->环境变量):


4、新建按钮添加

TNS_ADMIN=D:\oracle\instantclient_12_2

NLS_LANG=SIMPLIFIED CHINESE_CHINA.ZHS16GBK

path变量后面添加D:\oracle\instantclient_12_2;D:\oracle\instantclient_12_2\sdk;

5、window+r--->cmd 


 sqlplus user/pwd@ip:port/sid(数据库名称)

OK !大功告成!

<think>嗯,用户想了解数组二分法。首先,我需要确定他们对二分法的理解程度。可能他们刚开始学习算法,或者在做题时遇到了困难。得从基础讲起,别用太专业的术语。 二分法的核心思想是分而治之,对吧?每次把搜索范围减半,这样时间复杂度可以降到O(log n)。但用户可能更关心的是如何实现,以及适用场景。得举几个例子,比如有序数组查找,或者旋转数组找最小值。 然后要强调前提条件:数组必须有序,或者至少部分有序。不过有时候题目可能看起来无序,但通过观察可以找到某种规律,这时候也能用二分。比如在旋转数组中查找目标值,虽然整体无序,但分成两部分后,其中一部分仍然有序。 接下来,步骤分解。确定左右边界,计算中间位置,比较中间元素和目标值,调整左右边界。可能需要处理边界问题,比如left <= right还是left < right,mid是上取整还是下取整。这些细节容易出错,得提醒用户注意。 还要举一个具体的例子,比如在有序数组里找目标值的位置。用代码示例的话,可能需要用Python或Java,但用户没有指定语言,用中文描述逻辑更安全。不过要注意用户是否希望看到代码,但根据指令,可能不需要具体代码,而是步骤说明。 另外,常见的应用场景有哪些呢?比如查找插入位置,寻找峰值,旋转数组的最小值,或者数值的平方根近似计算。这些例子能帮助用户理解二分法的灵活性。 可能存在的误区,比如认为二分法只能用于严格有序数组,或者必须使用递归实现。其实迭代方式更高效,而且部分有序的情况也能应用。需要澄清这些点,避免用户理解偏差。 最后,总结使用二分法的关键点:确定有序性,正确调整边界,处理循环条件。可能还要提到测试用例的重要性,比如处理目标值不存在的情况,或者数组长度为1时的边界情况。 总之,结构应该从定义、原理、步骤、应用场景、注意事项几个方面展开,用简单易懂的语言,结合实例,让用户能够逐步理解并应用二分法解决问题。</think>数组二分法是一种基于分治思想的高效查找算法,适用于有序或部分有序的数组。其核心原理是通过不断缩小搜索范围,将时间复杂度优化至$O(\log n)$。以下是逐步解析: --- ### 一、适用条件 1. **数组有序性**:数组本身有序(升序/降序) 2. **存在明确边界**:可通过比较中间元素快速确定目标值所在的区间 3. **单调性问题**:如寻找峰值、旋转点等特殊场景(需通过条件判断构造单调性) --- ### 二、算法步骤 1. **初始化边界** 设左边界$left=0$,右边界$right=len(nums)-1$ 2. **循环缩小范围** ```plaintext while left <= right: mid = left + (right - left) // 2 # 防溢出写法 比较 nums[mid] 与目标值 target ``` 3. **调整边界** - 若`nums[mid] < target` → 目标在右半区 → `left = mid + 1` - 若`nums[mid] > target` → 目标在左半区 → `right = mid - 1` - 若`nums[mid] == target` → 找到目标 → 返回索引 4. **终止条件** 当`left > right`时,未找到目标值,返回特定标识(如-1) --- ### 三、典型应用场景 1. **基础查找** 在有序数组中查找目标值,例如: $$nums = [1,3,5,7,9],\ target=5 \Rightarrow 返回索引2$$ 2. **寻找边界** 如查找第一个等于目标值的位置(左边界)或最后一个等于目标值的位置(右边界) 3. **旋转数组问题** 例如在$[4,5,6,7,0,1,2]$中寻找最小值,通过比较`nums[mid]`与`nums[right]`确定有序区间 4. **数值计算** 可用于计算平方根(如求$\sqrt{x}$时,将搜索范围设为$[0, x]$) --- ### 四、关键注意事项 1. **区间开闭选择** 根据需求选择`left <= right`(闭区间)或`left < right`(左闭右开) 2. **避免死循环** `mid`计算需与边界调整方式匹配,例如: ```plaintext mid = left + (right - left) // 2 # 偏左中位数 mid = left + (right - left + 1) // 2 # 偏右中位数 ``` 3. **重复元素处理** 当存在重复值时,需通过额外条件判断确定具体边界 --- ### 五、代码模板示例(Python) ```python def binary_search(nums, target): left, right = 0, len(nums)-1 while left <= right: mid = left + (right - left) // 2 if nums[mid] == target: return mid elif nums[mid] < target: left = mid + 1 else: right = mid - 1 return -1 ``` --- 通过掌握二分法的核心逻辑和边界处理技巧,可高效解决大量与有序数组相关的算法问题。实际应用中需结合具体场景调整比较条件和边界更新策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值