- 博客(71)
- 收藏
- 关注
原创 昆虫分类与检测系统源码分享[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
数据集信息展示在昆虫分类与检测的研究领域,数据集的构建与应用至关重要。本项目采用的数据集名为“Bug Gan”,其设计旨在为改进YOLOv8模型提供丰富的训练素材,以实现更高效的昆虫识别与分类。该数据集包含29个不同的昆虫类别,涵盖了广泛的生物多样性,能够有效支持深度学习模型在复杂环境中的学习与推理。
2024-10-08 11:28:17 1510
原创 桥梁检测系统源码分享
数据集信息展示在现代桥梁工程和交通管理中,桥梁的安全性和完好性至关重要。为了提升桥梁检测的效率和准确性,研究人员开发了一种基于YOLOv8的桥梁检测系统。本研究所使用的数据集名为“bridge1”,该数据集专门为桥梁检测任务而设计,旨在为模型训练提供高质量的标注数据。“bridge1”数据集的类别数量为1,具体类别为“bridge”。这一设计使得数据集的目标明确,专注于桥梁这一特定对象的检测。通过将所有的样本集中在单一类别上,研究者能够更好地优化模型的学习过程,从而提高其在桥梁检测任务中的表现。
2024-10-07 19:38:26 1129
原创 轴承缺陷检测系统源码分享
数据集信息展示在现代工业中,轴承作为关键的机械部件,其性能直接影响到设备的运行效率和安全性。因此,针对轴承缺陷的检测与识别显得尤为重要。为此,我们构建了一个专门用于训练改进YOLOv8的轴承缺陷检测系统的数据集——“BearingDefect v2”。该数据集旨在为研究人员和工程师提供一个高质量的样本库,以便在实际应用中有效识别和分类轴承缺陷,进而提升设备的维护效率和可靠性。“BearingDefect v2”数据集包含了丰富的轴承缺陷图像,专注于一种特定的缺陷类型,即“scratch”(划痕)。
2024-10-07 16:33:06 1148
原创 羚羊种类检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“Antelope detection”的数据集,以训练和改进YOLOv8模型在羚羊种类检测系统中的表现。该数据集包含33个类别,涵盖了多种羚羊及相关物种,提供了丰富的样本和多样化的特征,使得模型能够更准确地识别和分类不同种类的羚羊。这些类别不仅包括常见的羚羊种类,如黑buck(Blackbuck)、斑马(Zebra)和大羚羊(Giraffe),还涵盖了其他相关物种,如水牛(Buffalo)和春羚(Springbok),这为模型的训练提供了广泛的视角和多样的样本。
2024-10-07 13:27:51 983
原创 植物种类识别系统源码分享
数据集信息展示在植物种类识别系统的研究中,数据集的构建与选择至关重要。本研究所使用的数据集名为“aglaonema”,专门用于训练和改进YOLOv8模型,以实现对不同植物种类的高效识别。该数据集包含13个独特的植物类别,涵盖了多样的“aglaonema”品种,每个类别都代表了一种特定的植物特征与生长环境,确保了模型在实际应用中的准确性和鲁棒性。
2024-10-02 12:46:49 944
原创 番茄成熟度检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“6 Stages of Tomato Maturity”的数据集,以改进YOLOv8模型在番茄成熟度检测系统中的表现。该数据集专门针对番茄的不同成熟阶段进行了精心标注,涵盖了六个成熟度类别,分别为“class 1”、“class 2”、“class 3”、“class 4”、“class 5”和“class 6”。这些类别代表了从未成熟到完全成熟的不同状态,为我们提供了一个丰富的基础,以训练和优化深度学习模型。
2024-10-01 20:21:57 1238
原创 烟雾污染云层检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“yolov10_smoke2”的数据集,以训练和改进YOLOv8模型,旨在提升烟雾污染云层的检测能力。该数据集专门针对烟雾和云层的识别任务,具有较高的应用价值,尤其是在环境监测和气象预报等领域。数据集的设计充分考虑了现实世界中烟雾和云层的多样性,确保模型在各种条件下的鲁棒性和准确性。“yolov10_smoke2”数据集包含两个主要类别,分别为“cloud”(云层)和“smoke”(烟雾)。这两个类别的选择不仅反映了研究的重点,也体现了对环境污染问题的关注。
2024-09-28 12:35:11 876
原创 焊接缺陷检测系统源码分享
数据集信息展示在焊接缺陷检测领域,准确性和效率是评估系统性能的关键指标。为此,本研究选用了名为“Weld detection”的数据集,旨在为改进YOLOv8模型提供高质量的训练数据。该数据集专注于焊接缺陷的识别与分类,具有重要的应用价值,尤其是在工业生产和质量控制中。数据集的设计旨在涵盖焊接过程中可能出现的各种缺陷,以确保模型在实际应用中的鲁棒性和可靠性。“Weld detection”数据集的类别数量为1,具体类别为“weld”。
2024-09-28 10:14:59 1080
原创 外国电影演员识别系统源码分享
数据集信息展示在本研究中,我们使用了名为“Cinema Actors Classification”的数据集,旨在改进YOLOv8模型在外国电影演员识别系统中的表现。该数据集包含10个类别,分别代表了十位著名的外国电影演员。具体的类别包括:Adile Nasit、Cuneyt Arkin、Fatma Girik、Hulya Kocyigit、Kadir Inanir、Kemal Sunal、Sener Sen、Tarik Akan、Turkan Soray和Zeki Alasya。
2024-09-27 21:27:51 1187
原创 文档信息提取系统源码分享
数据集信息展示在本研究中,我们采用了名为“bounding box”的数据集,以支持对YOLOv8模型的改进,特别是在文档信息提取系统的训练过程中。该数据集的设计旨在提供多样化的文档图像,涵盖了不同类型的信息元素,能够有效地帮助模型学习和识别文档中的关键信息。数据集的类别数量为六个,具体类别包括:‘gambar’(图像)、‘identitas’(身份信息)、‘nomor’(号码)、‘penanda_jawaban’(答案标记)、‘teks_mtk’(数学文本)和’teks_salah’(错误文本)。
2024-09-27 19:07:40 1022
原创 年龄性别与手势识别系统源码分享
数据集信息展示在现代计算机视觉领域,针对年龄、性别及手势识别的研究逐渐成为热点,尤其是在智能广告牌等应用场景中,如何精准识别观众的特征以提供个性化内容,已成为提升用户体验的关键。为此,本研究选用了“Age, gender and Hand Gestures Detection by Baahir for Smart Billboard”这一数据集,以训练和改进YOLOv8模型,从而实现高效的年龄、性别与手势识别。该数据集包含36个类别,具体包括12个女性年龄段、12个男性年龄段以及12个手势类别。
2024-09-27 16:43:30 808
原创 水下生物检测系统源码分享
数据集信息展示在水下生物检测领域,准确识别和分类各种生物是实现有效监测和保护水下生态系统的关键。为此,我们构建了一个名为“Underwater creatures detection”的数据集,旨在为改进YOLOv8模型提供丰富的训练数据,以提升其在水下环境中的检测性能。该数据集包含五个主要类别,分别是:鳗鱼(eel)、鱼类(fish)、人类(human)、水母(jellyfish)和龙虾(lobster)。这些类别的选择不仅考虑了水下生态系统的多样性,也反映了人类活动对水下生物的影响。
2024-09-26 17:38:04 1105
原创 水面湖面垃圾分类检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“trash”的数据集,旨在训练和改进YOLOv8模型,以实现对水面和湖面垃圾的高效分类检测。该数据集专门针对水域环境中的常见垃圾类型进行了精心构建,涵盖了四个主要类别,分别是瓶子、纸箱、纸张和塑料。这些类别的选择不仅反映了水域垃圾的实际情况,也为模型的训练提供了丰富的样本和多样化的特征,从而提高了检测的准确性和鲁棒性。“trash”数据集的设计考虑到了多种因素,以确保其在实际应用中的有效性。
2024-09-26 15:17:54 604
原创 监控鞋类物品检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“Total”的数据集,以支持对YOLOv8模型的改进,专注于监控鞋类物品的检测系统。该数据集的设计旨在涵盖多种鞋类及相关物品,确保模型在实际应用中的准确性和鲁棒性。数据集的类别数量为五个,具体类别包括:crocs(洞洞鞋)、high_heel(高跟鞋)、long_skirt(长裙)、shoe(普通鞋)以及uncertain(不确定物品)。这些类别的选择不仅反映了鞋类物品的多样性,还考虑到了在实际监控场景中可能遇到的各种情况。
2024-09-26 11:21:35 851
原创 自然场景文本定位系统源码分享
数据集信息展示在本研究中,我们使用了名为“Text scene”的数据集,旨在训练和改进YOLOv8的自然场景文本定位系统。该数据集的设计旨在为计算机视觉领域提供丰富的文本检测样本,尤其是在复杂的自然场景中。通过对该数据集的深入分析,我们能够更好地理解其结构和应用潜力,从而为模型的训练和优化提供有力支持。“Text scene”数据集包含两个主要类别,分别是“0”和“Text Detection - v16 2023-12-28 11-11am”。
2024-09-25 22:13:59 894
原创 泰勒锥检测系统源码分享
数据集信息展示在本研究中,我们构建了一个专门用于训练和改进YOLOv8模型的泰勒锥检测系统,所使用的数据集名为“TaylorCone”。该数据集旨在为泰勒锥的检测与识别提供高质量的图像数据,支持计算机视觉领域的研究与应用。泰勒锥是一种在流体动力学中重要的现象,广泛应用于喷雾、雾化以及微流体设备等领域。为了有效地捕捉和分析这一现象,我们设计了一个包含多样化样本的图像数据集,以便于模型的训练和优化。“TaylorCone”数据集的类别数量为1,具体类别为“TaylorCone”。
2024-09-25 19:53:40 1142
原创 街头摊贩检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“street vendors”的数据集,以改进YOLOv8的街头摊贩检测系统。该数据集专注于街头摊贩的多样性,涵盖了三种主要类别:食品车(food cart)、小亭(kiosk)和流动商店(shop on wheels)。这些类别的选择反映了城市环境中常见的街头摊贩类型,旨在为计算机视觉模型提供丰富的训练样本,以提高其在实际应用中的检测精度和鲁棒性。“street vendors”数据集的构建考虑到了街头摊贩的多样性和复杂性。
2024-09-25 17:33:18 895
原创 插座检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“socket_rocket”的数据集,以训练和改进YOLOv8的插座检测系统。该数据集专注于插座这一特定目标,旨在提升计算机视觉模型在实际应用中的准确性和效率。数据集的类别数量为1,类别列表中仅包含“socket”这一项,反映了我们对插座检测任务的专一性和深度。“socket_rocket”数据集的构建过程经过精心设计,确保其在多样性和代表性方面具备良好的基础。数据集中的图像来源于不同的环境和场景,包括家庭、办公室和公共场所等多种类型的插座。
2024-09-25 13:12:58 1146
原创 船只类型识别系统源码分享
数据集信息展示在现代海洋监测与管理中,船只类型的准确识别是确保航运安全、环境保护和资源管理的重要环节。为此,开发出高效且准确的船只识别系统显得尤为重要。本研究采用的数据集名为“Ship Recognition Augmented”,旨在为改进YOLOv8模型提供丰富的训练数据,以提升其在船只类型识别方面的性能。该数据集专注于两种主要的船只类型,分别为“大型船只”和“小型船只”,共计两个类别。数据集的构建过程经过精心设计,确保了样本的多样性和代表性。
2024-09-24 18:52:29 949
原创 树木检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Samson Tree detection”的数据集,以改进YOLOv8模型在树木检测任务中的性能。该数据集专门针对树木的识别与定位进行了精心设计,旨在为计算机视觉领域提供高质量的训练数据。数据集的类别数量为1,且唯一的类别名称为“Tree”,这意味着该数据集的主要目标是准确识别和检测树木的存在及其位置。“Samson Tree detection”数据集的构建考虑到了树木在不同环境和条件下的多样性。
2024-09-24 16:32:12 1064
原创 简历信息提取系统源码分享
数据集信息展示在当今信息化快速发展的时代,简历作为求职者展示个人能力和经历的重要工具,其信息提取的准确性和高效性显得尤为重要。为此,我们构建了一个名为“Resume section”的数据集,旨在为改进YOLOv8的简历信息提取系统提供强有力的支持。该数据集的设计充分考虑了简历的多样性和复杂性,涵盖了14个不同的类别,确保能够全面、准确地提取简历中的关键信息。
2024-09-24 14:11:50 905
原创 收据信息提取系统源码分享
数据集信息展示在现代商业环境中,收据信息提取系统的需求日益增长,尤其是在电子商务和财务管理领域。为满足这一需求,我们构建了一个专门用于训练改进YOLOv8模型的“Receipts”数据集。该数据集旨在提高收据信息提取的准确性和效率,助力智能化财务处理。“Receipts”数据集包含了丰富的收据信息,涵盖了多种重要的类别,以便于模型在实际应用中能够准确识别和提取所需信息。
2024-09-24 11:51:29 1041
原创 机械零件检测系统源码分享
数据集信息展示在现代制造业和自动化领域,机械零件的高效检测与识别至关重要。为此,我们构建了一个名为“psio”的数据集,旨在为改进YOLOv8的机械零件检测系统提供强有力的支持。该数据集专注于四种关键的机械零件,分别是卡片(Card)、螺母(Nut)、螺钉(Screw)和垫圈(Washer),这些零件在各类机械装置中广泛应用,其准确识别对于提升生产效率和降低故障率具有重要意义。“psio”数据集包含了丰富的图像样本,每个类别的样本数量经过精心设计,以确保模型在训练过程中能够充分学习到每种零件的特征。
2024-09-24 09:31:07 543
原创 个人防护装备检测系统源码分享
数据集信息展示在现代工业和建筑环境中,个人防护装备(PPE)的使用至关重要。为了提高安全性和降低事故发生率,开发一个高效的个人防护装备检测系统显得尤为重要。本研究中使用的数据集名为“PPE 2”,其主要目的是为改进YOLOv8模型在个人防护装备检测方面的性能提供支持。该数据集包含16个类别,涵盖了多种类型的个人防护装备及其缺失状态,确保了检测系统的全面性和准确性。“PPE 2”数据集的类别列表包括了多种常见的个人防护装备,如耳保护器、眼镜、手套、安全帽、口罩、安全鞋以及反光背心等。
2024-09-23 22:17:28 1119
原创 塑料瓶回收流水线分拣系统源码分享
数据集信息展示在现代环保与资源回收的背景下,塑料瓶的回收处理成为了一个亟待解决的重要问题。为此,我们构建了一个专门用于训练改进YOLOv8模型的“plastic bottle”数据集,以提高塑料瓶回收流水线的分拣效率和准确性。该数据集包含了三种主要类别,分别是高密度聚乙烯(HDPE)、聚对苯二甲酸乙二醇酯(PET)以及瓶盖(caps)。这些类别的选择不仅反映了市场上常见的塑料瓶种类,也对应了实际回收过程中需要重点识别的物品。
2024-09-23 19:56:53 1324
原创 艺术作品风格识别系统源码分享
数据集信息展示在本研究中,我们采用了名为“pieces”的数据集,以改进YOLOv8的艺术作品风格识别系统。该数据集包含20个不同的艺术风格类别,旨在为深度学习模型提供丰富的训练样本,以便更好地识别和分类各种艺术作品。
2024-09-23 17:36:19 1312
原创 托盘检测系统源码分享
数据集信息展示在现代物流和仓储管理中,托盘的高效检测与管理至关重要。为此,我们构建了一个专门用于训练改进YOLOv8托盘检测系统的数据集,命名为“pallet_pocket_detect”。该数据集的设计旨在提高托盘及其相关组件的检测精度,确保在实际应用中能够快速、准确地识别出托盘及其左右两侧的口袋。这一数据集的核心构成包括三个主要类别,分别是“left-pocket”(左口袋)、“pallet”(托盘)和“right-pocket”(右口袋),共计三个类别(nc: 3)。
2024-09-23 15:15:47 1318
原创 多类别物体检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“OldDataset”的数据集,以改进YOLOv8的多类别物体检测系统。该数据集包含60个不同的类别,涵盖了丰富的日常物品和动物,为模型的训练提供了多样化的样本。这些类别的多样性不仅增强了模型的泛化能力,也为其在实际应用中的表现奠定了坚实的基础。“OldDataset”中的类别包括了从交通工具到食品,从家具到动物的广泛范围。
2024-09-22 21:50:12 1307
原创 航拍房屋检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“nrumba”的数据集,以改进YOLOv8的航拍房屋检测系统。该数据集专门设计用于支持房屋检测任务,涵盖了多种航拍场景,旨在提高模型在实际应用中的准确性和鲁棒性。数据集的类别数量为2,分别标记为‘0’和‘1’,这些类别可以代表不同类型的房屋或建筑物特征,具体的类别定义可以根据项目需求进行扩展和细化。“nrumba”数据集的构建过程注重多样性和代表性,确保其包含了丰富的航拍图像。这些图像来源于不同的地理位置和环境条件,涵盖了城市、乡村及其周边地区的多种建筑类型。
2024-09-22 11:56:00 1368
原创 篮球运动场景物体检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“nexsports-ball”的数据集,以改进YOLOv8在篮球运动场景中的物体检测能力。该数据集专门针对篮球运动的特定需求而设计,包含了丰富的场景和多样化的物体,以便于模型在实际应用中能够更好地识别和定位篮球场上的关键元素。数据集的类别数量为2,具体包括“ball”(篮球)和“player”(球员),这两个类别是篮球比赛中最为重要的元素。“nexsports-ball”数据集的构建过程考虑到了篮球比赛的复杂性和动态性。
2024-09-21 22:15:37 1480
原创 巴蒂克图案识别系统源码分享
数据集信息展示在本研究中,我们使用了名为“Motif Batik”的数据集,以改进YOLOv8模型在巴蒂克图案识别系统中的性能。巴蒂克作为一种传统的印染艺术,承载着丰富的文化内涵和历史背景,其图案的多样性和复杂性为计算机视觉领域的研究提供了极具挑战性的任务。为了有效地训练模型,我们的数据集包含了15个不同的巴蒂克图案类别,涵盖了广泛的风格和设计元素。
2024-09-21 10:58:18 832
原创 食品安全标签检测系统源码分享
数据集信息展示在食品安全领域,标签的准确检测与识别对于确保消费者健康和食品质量至关重要。为此,本研究采用了名为“merge__gen__all”的数据集,以训练和改进YOLOv8模型,旨在提升食品安全标签的检测系统的性能。该数据集的设计考虑了多样性和实用性,包含了11个不同的标签类别,涵盖了食品安全和质量的各个方面。
2024-09-20 10:39:47 1036
原创 性格类型识别系统源码分享
数据集信息展示在本研究中,我们采用了名为“mbti”的数据集,以支持对性格类型的识别系统进行改进,特别是针对YOLOv8模型的训练和优化。该数据集专注于基于迈尔斯-布里格斯性格类型指标(MBTI)进行性格分类,涵盖了16种不同的性格类型。每种性格类型都有其独特的特征和行为模式,这使得数据集在心理学和个体差异研究中具有重要的应用价值。
2024-09-19 23:37:22 741
原创 化妆风格识别系统源码分享
数据集信息展示在当今快速发展的化妆品行业中,化妆风格的识别与分类成为了计算机视觉领域的重要研究方向之一。为此,我们构建了一个名为“makeup”的数据集,旨在为改进YOLOv8的化妆风格识别系统提供强有力的支持。该数据集包含了八种不同的化妆风格,涵盖了从日常妆容到特殊场合妆容的多样性,充分体现了现代女性在不同场合下的化妆需求。
2024-09-19 20:59:44 1229
原创 泳池软管检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“line for label”的数据集,以支持对YOLOv8模型的训练,旨在改进泳池软管的检测系统。该数据集专门设计用于满足特定的检测需求,涵盖了泳池软管这一独特类别。数据集的类别数量为1,具体类别列表中仅包含一个标签,标记为‘0’,这意味着该数据集的重点集中在泳池软管的识别与定位上。“line for label”数据集的构建过程考虑到了泳池软管在实际应用中的多样性和复杂性。
2024-09-19 17:57:55 951
原创 山体滑坡检测系统源码分享
数据集信息展示在进行山体滑坡检测系统的研究与开发过程中,数据集的选择与构建至关重要。本项目所采用的数据集名为“LANDSLIDE DETECTION”,其专注于山体滑坡现象的识别与分类,旨在为改进YOLOv8模型提供高质量的训练数据。该数据集的设计充分考虑了山体滑坡的多样性与复杂性,确保模型在实际应用中具备良好的泛化能力。“LANDSLIDE DETECTION”数据集的类别数量为1,具体类别为“LANDSLIDE”。这一单一类别的设定反映了研究的专一性,旨在深入挖掘山体滑坡的特征与模式。
2024-09-19 08:57:05 1501
原创 钢索缺陷检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“kanaaat”的数据集,旨在训练和改进YOLOv8模型,以实现高效的钢索缺陷检测。该数据集专门针对钢索的不同缺陷类型进行了精心的标注和整理,包含了三种主要的缺陷类别:断裂(break)、雷击(thunderbolt)和磨损(wear)。这些类别的选择反映了在实际应用中钢索可能面临的常见问题,具有重要的实用价值和研究意义。“kanaaat”数据集的构建过程经过了严格的标准化和验证,确保了数据的质量和标注的准确性。
2024-09-18 22:26:02 1244
原创 瞳孔检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“IRPupils”的数据集,以改进YOLOv8的瞳孔检测系统。该数据集专注于瞳孔的识别与定位,旨在为计算机视觉领域提供高质量的训练数据,促进瞳孔检测技术的进步。IRPupils数据集的设计理念是为研究人员和开发者提供一个统一的、标准化的资源,以便于在各种环境下进行瞳孔检测的实验和模型训练。IRPupils数据集包含一个类别,即“pupil”,这意味着所有的标注数据均围绕这一特定目标展开。尽管类别数量较少,但数据集的丰富性和多样性弥补了这一不足。
2024-09-18 19:08:56 1258
原创 对话框按钮检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“ICON Detection”的数据集,以改进YOLOv8模型在对话框按钮检测系统中的性能。该数据集专注于识别用户界面中的三种主要按钮类型,分别是“close”(关闭按钮)、“popup”(弹出按钮)和“txtbutton”(文本按钮)。通过对这些类别的深入分析和训练,我们旨在提升模型在实际应用场景中的准确性和鲁棒性。“ICON Detection”数据集的构建经过精心设计,确保了其在多样性和代表性方面的优势。
2024-09-18 16:48:33 815
原创 珠宝首饰检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“heydome”的数据集,以训练和改进YOLOv8模型在珠宝首饰检测任务中的表现。该数据集专注于五种不同类型的耳环,旨在为计算机视觉领域提供丰富的样本,以提升自动检测和分类的准确性。数据集的类别数量为五,具体包括:Cubic - Glass Earrings、Fashion Earrings、Pearl Earring、Plated Earring和Silver Needle Earring。这些类别不仅涵盖了耳环的多样性,还体现了珠宝首饰设计的复杂性和美学特征。
2024-09-17 22:26:48 1395
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人