机械零件检测检测系统源码分享
[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
1.研究背景与意义
项目参考AAAI Association for the Advancement of Artificial Intelligence
项目来源AACV Association for the Advancement of Computer Vision
研究背景与意义
随着工业自动化和智能制造的快速发展,机械零件的检测与识别在生产流程中变得愈发重要。传统的人工检测方法不仅效率低下,而且容易受到人为因素的影响,导致检测结果的不稳定性和不准确性。因此,开发高效、准确的机械零件检测系统显得尤为迫切。近年来,深度学习技术的迅猛发展为物体检测领域带来了新的机遇,尤其是YOLO(You Only Look Once)系列模型因其高效的实时检测能力而受到广泛关注。YOLOv8作为该系列的最新版本,结合了更先进的网络结构和算法优化,展现出更高的检测精度和速度。然而,针对特定工业应用场景的YOLOv8模型仍需进行改进和优化,以适应不同类型机械零件的检测需求。
本研究围绕基于改进YOLOv8的机械零件检测系统展开,旨在利用该模型对机械零件进行高效的自动化检测。所使用的数据集包含2600张图像,涵盖了四类机械零件:卡片(Card)、螺母(Nut)、螺钉(Screw)和垫圈(Washer)。这些类别在机械装配和维护中具有重要的应用价值,准确识别和分类这些零件不仅可以提高生产效率,还能降低因零件错误使用而导致的设备故障风险。因此,构建一个高效的检测系统,对于提升生产线的智能化水平、降低人工成本、提高产品质量具有重要的现实意义。
此外,随着制造业向智能化、数字化转型,如何有效地利用数据驱动技术来提升生产效率和产品质量,已成为业界关注的焦点。基于改进YOLOv8的机械零件检测系统,不仅可以为生产线提供实时的检测反馈,还能够通过数据分析实现对生产过程的优化和改进。这种智能检测系统的应用,能够有效降低生产过程中的人为错误,提高生产的自动化程度,推动制造业的转型升级。
本研究的意义还在于推动深度学习技术在工业领域的应用,探索YOLOv8在特定任务中的改进策略。通过对模型进行针对性的优化,研究如何提高其在小样本数据集上的表现,以应对实际生产中可能遇到的多样性和复杂性。这不仅为相关领域的研究提供了新的思路,也为未来的工业应用奠定了基础。
综上所述,基于改进YOLOv8的机械零件检测系统的研究,不仅具有重要的理论价值,还有着广泛的实际应用前景。通过本研究的开展,期望能够为机械零件的智能检测提供新的解决方案,推动工业自动化的发展,为制造业的高质量发展贡献力量。
2.图片演示
注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
3.视频演示
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 4
names: [‘Card’, ‘Nut’, ‘Screw’, ‘Washer’]
4.2 本项目数据集信息介绍
数据集信息展示
在现代制造业和自动化领域,机械零件的高效检测与识别至关重要。为此,我们构建了一个名为“psio”的数据集,旨在为改进YOLOv8的机械零件检测系统提供强有力的支持。该数据集专注于四种关键的机械零件,分别是卡片(Card)、螺母(Nut)、螺钉(Screw)和垫圈(Washer),这些零件在各类机械装置中广泛应用,其准确识别对于提升生产效率和降低故障率具有重要意义。
“psio”数据集包含了丰富的图像样本,每个类别的样本数量经过精心设计,以确保模型在训练过程中能够充分学习到每种零件的特征。数据集的构建过程中,我们注重样本的多样性和代表性,确保不同光照条件、视角和背景下的零件图像均被纳入考虑。这种多样性不仅提高了模型的鲁棒性,还使其在实际应用中能够更好地适应不同的环境和条件。
在类别划分上,数据集中的四个类别各自具有独特的形状和特征。例如,卡片通常呈现出平坦的矩形外观,边缘清晰,而螺母则是六角形或方形,表面可能有凹槽或其他结构以便于工具的操作。螺钉则具有螺纹和头部设计,通常与其他零件紧密结合,垫圈则用于提供密封和支撑,形状多样,通常是圆形或环形。这些特征的多样性为模型的训练提供了丰富的学习材料,使其能够更准确地进行零件的分类和定位。
为了进一步增强数据集的实用性,我们还进行了数据增强处理,包括旋转、缩放、翻转和颜色调整等操作。这些处理不仅增加了样本的数量,还有效提升了模型的泛化能力,使其在面对未见过的样本时依然能够保持较高的识别准确率。此外,数据集中的每个图像都配有详细的标注信息,包括零件的类别和位置,这为训练和评估提供了必要的基础。
在使用“psio”数据集进行YOLOv8模型的训练时,我们采用了分层抽样的方法,以确保每个类别的样本在训练和验证集中的比例合理。这种方法不仅提高了模型在各类别上的表现,还减少了因类别不平衡导致的训练偏差。通过对模型进行反复训练和调优,我们期望能够显著提升机械零件的检测精度和速度,为工业自动化和智能制造提供更为高效的解决方案。
总之,“psio”数据集的构建和应用为机械零件检测系统的研究提供了坚实的基础。通过对四种关键零件的深入分析和数据集的精心设计,我们希望能够推动YOLOv8在实际应用中的表现,助力于未来智能制造的发展。
5.全套项目环境部署视频教程(零基础手把手教学)
5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)
6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)
6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)
7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)
由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:
9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10.原始YOLOV8算法原理
原始YOLOv8算法原理
YOLOv8作为YOLO系列算法的最新版本,代表了目标检测领域的一次重要进步。其设计理念是将检测速度与精度进行有效平衡,使得该算法在实时应用中表现出色。YOLOv8的网络结构由四个主要部分组成:输入层、Backbone(主干网络)、Neck(特征融合网络)和Head(检测模块)。这一结构的设计不仅考虑了特征提取的有效性,还注重了不同尺度目标的检测能力,充分展现了YOLOv8在多任务处理中的灵活性和高效性。
在输入层,YOLOv8首先对输入图像进行预处理。这一过程包括图像的缩放和比例调整,以适应网络的输入要求。此外,YOLOv8引入了Mosaic增强技术,这种技术通过将多张图像拼接在一起,生成新的训练样本,从而丰富了训练数据的多样性,提升了模型的泛化能力。同时,瞄点计算的引入使得模型在处理复杂场景时能够更好地聚焦于目标,提高了检测的准确性。
Backbone部分是YOLOv8的核心特征提取模块,采用了改进的DarkNet结构。与之前版本不同的是,YOLOv8使用了C2f模块替代了C3模块,C2f模块通过跨层连接增强了梯度流动,改善了特征提取的效果。该模块不仅提高了网络的性能,还保持了轻量级特性,使得YOLOv8在资源受限的环境中依然能够高效运行。Backbone部分由多个CBS模块、C2f模块和一个快速空间金字塔池化(SPPF)模块组成。SPPF模块通过不同内核尺寸的池化操作,融合了多尺度特征图,进一步提升了特征的表达能力。
在Neck部分,YOLOv8采用了双塔结构,将特征金字塔网络(FPN)与路径聚合网络(PAN)相结合。这一设计使得不同尺度的特征图能够有效融合,从而更好地捕捉目标的语义信息和定位信息。通过这种特征融合,YOLOv8能够在不同尺度的目标检测中表现出色,增强了对小目标和大目标的检测能力。此外,Neck部分的设计也促进了特征的传递,确保了信息在网络中的流动更加顺畅。
Head部分是YOLOv8的检测模块,负责最终的目标检测和分类任务。YOLOv8采用了解耦的检测头结构,将回归分支和预测分支进行分离,这一创新设计显著加速了模型的收敛速度,并提高了检测精度。检测头包含多个卷积层和反卷积层,通过并行的卷积分支分别计算目标的位置信息和类别信息。这种解耦结构不仅提高了检测的效率,还使得模型在处理复杂场景时能够更好地应对不同目标的特征。
YOLOv8的训练和部署框架基于Pytorch,使得自定义模型的训练变得更加便捷。该框架支持多种网络结构的选择,包括YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l和YOLOv8x等。这些不同的网络结构在Backbone的层数和残差块的数量上有所区别,但基本原理相同,均旨在提升目标检测的性能。
综上所述,YOLOv8算法通过其创新的网络结构和特征处理机制,显著提升了目标检测的精度和速度。其在输入处理、特征提取、特征融合和目标检测等各个环节的优化,使得YOLOv8在面对复杂场景时依然能够保持高效的检测能力。这些设计理念和技术创新不仅为YOLO系列算法的发展奠定了基础,也为目标检测领域的进一步研究提供了新的思路和方向。随着YOLOv8的广泛应用,未来的目标检测技术将更加智能化和高效化,推动计算机视觉领域的持续进步。
11.项目核心源码讲解(再也不用担心看不懂代码逻辑)
11.1 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\lsknet.py
以下是对给定代码的核心部分进行提炼和详细注释的结果:
import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair as to_2tuple
from functools import partial
# 定义 Mlp 类,表示多层感知机
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features # 输出特征数
hidden_features = hidden_features or in_features # 隐藏层特征数
# 定义两层卷积和一个深度卷积
self.fc1 = nn.Conv2d(in_features, hidden_features, 1) # 1x1卷积
self.dwconv = DWConv(hidden_features) # 深度卷积
self.act = act_layer() # 激活函数
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) # 1x1卷积
self.drop = nn.Dropout(drop) # Dropout层
def forward(self, x):
# 前向传播
x = self.fc1(x)
x = self.dwconv(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
# 定义 LSKblock 类,表示一个特定的块
class LSKblock(nn.Module):
def __init__(self, dim):
super().__init__()
# 定义多个卷积层
self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) # 深度卷积
self.conv_spatial = nn.Conv2d(dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3) # 空间卷积
self.conv1 = nn.Conv2d(dim, dim//2, 1) # 1x1卷积
self.conv2 = nn.Conv2d(dim, dim//2, 1) # 1x1卷积
self.conv_squeeze = nn.Conv2d(2, 2, 7, padding=3) # 压缩卷积
self.conv = nn.Conv2d(dim//2, dim, 1) # 1x1卷积
def forward(self, x):
# 前向传播
attn1 = self.conv0(x) # 第一个注意力分支
attn2 = self.conv_spatial(attn1) # 第二个注意力分支
attn1 = self.conv1(attn1) # 处理第一个分支
attn2 = self.conv2(attn2) # 处理第二个分支
# 将两个分支的结果进行拼接
attn = torch.cat([attn1, attn2], dim=1)
avg_attn = torch.mean(attn, dim=1, keepdim=True) # 平均池化
max_attn, _ = torch.max(attn, dim=1, keepdim=True) # 最大池化
agg = torch.cat([avg_attn, max_attn], dim=1) # 拼接平均和最大池化结果
sig = self.conv_squeeze(agg).sigmoid() # 经过卷积后激活
# 计算最终的注意力
attn = attn1 * sig[:,0,:,:].unsqueeze(1) + attn2 * sig[:,1,:,:].unsqueeze(1)
attn = self.conv(attn) # 最终卷积
return x * attn # 输入与注意力相乘
# 定义 Attention 类,表示注意力机制
class Attention(nn.Module):
def __init__(self, d_model):
super().__init__()
self.proj_1 = nn.Conv2d(d_model, d_model, 1) # 1x1卷积
self.activation = nn.GELU() # 激活函数
self.spatial_gating_unit = LSKblock(d_model) # 空间门控单元
self.proj_2 = nn.Conv2d(d_model, d_model, 1) # 1x1卷积
def forward(self, x):
shortcut = x.clone() # 保留输入用于残差连接
x = self.proj_1(x) # 经过第一层卷积
x = self.activation(x) # 激活
x = self.spatial_gating_unit(x) # 经过空间门控单元
x = self.proj_2(x) # 经过第二层卷积
x = x + shortcut # 残差连接
return x
# 定义 Block 类,表示一个完整的块
class Block(nn.Module):
def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU):
super().__init__()
self.norm1 = nn.BatchNorm2d(dim) # 第一层归一化
self.norm2 = nn.BatchNorm2d(dim) # 第二层归一化
self.attn = Attention(dim) # 注意力机制
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # 随机丢弃路径
mlp_hidden_dim = int(dim * mlp_ratio) # MLP隐藏层维度
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) # MLP
def forward(self, x):
# 前向传播
x = x + self.drop_path(self.attn(self.norm1(x))) # 注意力层
x = x + self.drop_path(self.mlp(self.norm2(x))) # MLP层
return x
# 定义 LSKNet 类,表示整个网络结构
class LSKNet(nn.Module):
def __init__(self, img_size=224, in_chans=3, embed_dims=[64, 128, 256, 512], depths=[3, 4, 6, 3]):
super().__init__()
self.num_stages = len(embed_dims) # 网络阶段数
for i in range(self.num_stages):
# 每个阶段的嵌入层
patch_embed = OverlapPatchEmbed(img_size=img_size // (2 ** i), in_chans=in_chans if i == 0 else embed_dims[i - 1], embed_dim=embed_dims[i])
# 每个阶段的块
block = nn.ModuleList([Block(dim=embed_dims[i]) for _ in range(depths[i])])
setattr(self, f"patch_embed{i + 1}", patch_embed) # 将嵌入层添加到模型中
setattr(self, f"block{i + 1}", block) # 将块添加到模型中
def forward(self, x):
outs = []
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
x, H, W = patch_embed(x) # 嵌入
for blk in block:
x = blk(x) # 经过每个块
outs.append(x) # 保存输出
return outs # 返回所有阶段的输出
# 定义 DWConv 类,表示深度卷积
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) # 深度卷积
def forward(self, x):
return self.dwconv(x) # 前向传播
# 定义模型构建函数
def lsknet_t(weights=''):
model = LSKNet(embed_dims=[32, 64, 160, 256], depths=[3, 3, 5, 2]) # 构建模型
if weights:
model.load_state_dict(torch.load(weights)['state_dict']) # 加载权重
return model
# 主程序
if __name__ == '__main__':
model = lsknet_t('lsk_t_backbone-2ef8a593.pth') # 实例化模型
inputs = torch.randn((1, 3, 640, 640)) # 生成随机输入
for i in model(inputs):
print(i.size()) # 打印输出尺寸
代码核心部分说明:
- Mlp 类:实现了一个多层感知机,包含两个卷积层和一个深度卷积层,使用激活函数和 Dropout。
- LSKblock 类:实现了一个复杂的注意力机制,包含多个卷积层和特征聚合操作。
- Attention 类:实现了一个注意力模块,包含前向传播的残差连接。
- Block 类:组合了注意力模块和 MLP,形成一个完整的网络块。
- LSKNet 类:定义了整个网络结构,包含多个阶段,每个阶段由嵌入层和多个块组成。
- DWConv 类:实现了深度卷积操作,用于特征提取。
这些核心部分构成了一个复杂的神经网络架构,主要用于图像处理任务。
该文件定义了一个名为 lsknet.py
的深度学习模型,主要用于图像处理任务。文件中包含多个类和函数,构成了一个复杂的神经网络架构,以下是对其主要组成部分的逐一分析。
首先,文件导入了必要的库,包括 PyTorch 和一些其他模块。接着,定义了一个名为 Mlp
的类,这是一个多层感知机模块,包含两个卷积层和一个深度卷积层,使用 GELU 激活函数和 Dropout 进行正则化。该模块的 forward
方法定义了数据的前向传播过程。
接下来是 LSKblock
类,它实现了一种特殊的块结构,包含多个卷积层和注意力机制。该类通过空间卷积和深度卷积来提取特征,并使用注意力机制来加权不同的特征图,从而增强模型的表达能力。
Attention
类则是实现了一个简单的注意力机制,包含两个卷积层和一个空间门控单元。该模块的作用是对输入特征进行变换并结合原始输入,形成残差连接。
Block
类结合了归一化、注意力机制和多层感知机,形成了一个完整的网络块。它使用 Batch Normalization 和 DropPath 技术来提高模型的稳定性和性能。
OverlapPatchEmbed
类用于将输入图像转换为嵌入特征,使用卷积层来实现图像的分块嵌入,同时进行归一化处理。
LSKNet
类是整个网络的主体,包含多个阶段,每个阶段由嵌入层、多个块和归一化层组成。该类的构造函数接收多个参数以定义网络的结构,包括嵌入维度、块的深度等。forward
方法则实现了数据的逐阶段前向传播。
DWConv
类实现了深度卷积操作,用于在 Mlp
类中进行特征提取。
文件中还定义了两个函数 update_weight
和 lsknet_t
、lsknet_s
,用于加载预训练权重和创建不同版本的 LSKNet 模型。update_weight
函数用于更新模型的权重字典,确保加载的权重与模型结构相匹配。
最后,在 __main__
块中,示例了如何创建一个 LSKNet 模型实例,并通过随机生成的输入数据测试模型的输出尺寸。
总体来看,该文件实现了一个复杂的深度学习模型,结合了多种现代神经网络设计理念,如注意力机制、深度卷积和残差连接,适用于图像分类或其他视觉任务。
11.2 ui.py
import sys
import subprocess
def run_script(script_path):
"""
使用当前 Python 环境运行指定的脚本。
Args:
script_path (str): 要运行的脚本路径
Returns:
None
"""
# 获取当前 Python 解释器的路径
python_path = sys.executable
# 构建运行命令
command = f'"{python_path}" -m streamlit run "{script_path}"'
# 执行命令
result = subprocess.run(command, shell=True)
if result.returncode != 0:
print("脚本运行出错。")
# 实例化并运行应用
if __name__ == "__main__":
# 指定您的脚本路径
script_path = "web.py" # 这里可以直接指定脚本路径
# 运行脚本
run_script(script_path)
代码注释
-
导入模块:
import sys
:导入系统相关的模块,用于获取当前 Python 解释器的路径。import subprocess
:导入子进程模块,用于在 Python 中执行外部命令。
-
定义函数
run_script
:- 该函数接受一个参数
script_path
,表示要运行的 Python 脚本的路径。 - 使用
sys.executable
获取当前 Python 解释器的路径,以确保使用正确的 Python 环境来运行脚本。 - 构建命令字符串,使用
streamlit
模块运行指定的脚本。 - 使用
subprocess.run
执行构建的命令,并通过shell=True
允许在 shell 中执行命令。 - 检查命令的返回码,如果不为 0,表示脚本运行出错,打印错误信息。
- 该函数接受一个参数
-
主程序入口:
- 使用
if __name__ == "__main__":
确保只有在直接运行该脚本时才会执行以下代码。 - 指定要运行的脚本路径为
web.py
。 - 调用
run_script
函数,传入脚本路径以执行该脚本。
- 使用
这个程序文件名为 ui.py
,其主要功能是通过当前的 Python 环境运行一个指定的脚本,具体来说是一个名为 web.py
的脚本。程序首先导入了必要的模块,包括 sys
、os
和 subprocess
,这些模块分别用于访问系统参数、操作系统功能和执行外部命令。
在文件中定义了一个名为 run_script
的函数,该函数接受一个参数 script_path
,表示要运行的脚本的路径。函数内部首先获取当前 Python 解释器的路径,这通过 sys.executable
实现。接着,构建一个命令字符串,该命令用于调用 streamlit
运行指定的脚本。streamlit
是一个用于构建数据应用的库。
随后,使用 subprocess.run
方法执行构建好的命令。这个方法会在一个新的进程中运行命令,并且可以通过 shell=True
参数来允许使用 shell 特性。执行完命令后,程序会检查返回的状态码,如果状态码不为零,表示脚本运行出错,则打印出相应的错误信息。
在文件的最后部分,使用 if __name__ == "__main__":
语句来确保只有在直接运行该文件时才会执行后面的代码。在这部分代码中,调用了 abs_path
函数来获取 web.py
的绝对路径,并将其传递给 run_script
函数以执行该脚本。
总体来说,这个程序的主要目的是为了方便地运行一个特定的 Python 脚本,并在运行过程中处理可能出现的错误。
11.3 code\ultralytics\data\loaders.py
以下是经过简化和注释的核心代码部分,主要保留了视频流加载的功能以及相关类的实现:
import cv2
import numpy as np
from threading import Thread
from pathlib import Path
import time
import math
class LoadStreams:
"""
视频流加载器,支持多种视频流源,包括RTSP、RTMP、HTTP等。
"""
def __init__(self, sources="file.streams", imgsz=640, vid_stride=1, buffer=False):
"""初始化视频流加载器,设置视频源和参数。"""
self.buffer = buffer # 是否缓冲输入流
self.running = True # 线程运行标志
self.imgsz = imgsz # 图像大小
self.vid_stride = vid_stride # 视频帧率步幅
# 读取视频源
sources = Path(sources).read_text().rsplit() if Path(sources).is_file() else [sources]
n = len(sources) # 源数量
self.fps = [0] * n # 每个源的帧率
self.frames = [0] * n # 每个源的总帧数
self.threads = [None] * n # 线程列表
self.caps = [None] * n # 视频捕获对象列表
self.imgs = [[] for _ in range(n)] # 图像列表
self.shape = [[] for _ in range(n)] # 图像形状列表
self.sources = [s.strip() for s in sources] # 清理源名称
for i, s in enumerate(sources):
# 启动线程读取视频流帧
self.caps[i] = cv2.VideoCapture(s) # 创建视频捕获对象
if not self.caps[i].isOpened():
raise ConnectionError(f"无法打开视频源: {s}")
self.fps[i] = max(self.caps[i].get(cv2.CAP_PROP_FPS), 30) # 获取帧率,默认为30
success, im = self.caps[i].read() # 读取第一帧
if not success:
raise ConnectionError(f"无法读取视频源: {s}")
self.imgs[i].append(im) # 存储第一帧
self.shape[i] = im.shape # 存储图像形状
self.threads[i] = Thread(target=self.update, args=(i, self.caps[i], s), daemon=True)
self.threads[i].start() # 启动线程
def update(self, i, cap, stream):
"""在后台线程中读取视频流帧。"""
while self.running and cap.isOpened():
if len(self.imgs[i]) < 30: # 保持缓冲区最多30帧
cap.grab() # 抓取下一帧
success, im = cap.retrieve() # 获取帧
if success:
self.imgs[i].append(im) # 添加到图像列表
else:
self.imgs[i].append(np.zeros(self.shape[i], dtype=np.uint8)) # 添加空帧
def close(self):
"""关闭视频流加载器并释放资源。"""
self.running = False # 停止线程
for thread in self.threads:
if thread.is_alive():
thread.join(timeout=5) # 等待线程结束
for cap in self.caps:
cap.release() # 释放视频捕获对象
def __iter__(self):
"""返回迭代器对象。"""
self.count = -1
return self
def __next__(self):
"""返回源路径和图像进行处理。"""
self.count += 1
if self.count >= len(self.sources):
raise StopIteration # 结束迭代
images = []
for i in range(len(self.imgs)):
while not self.imgs[i]: # 等待帧可用
time.sleep(0.01)
images.append(self.imgs[i].pop(0)) # 获取并移除第一帧
return self.sources, images, None, "" # 返回源路径和图像
def __len__(self):
"""返回源数量。"""
return len(self.sources) # 源数量
代码说明:
- LoadStreams 类:负责从多种视频源加载视频流,支持多线程读取。
- init 方法:初始化视频流加载器,读取视频源并启动线程。
- update 方法:在后台线程中持续读取视频帧,确保图像缓冲区有足够的帧。
- close 方法:停止线程并释放资源。
- iter 和 next 方法:实现迭代器协议,允许用户逐帧获取视频流。
- len 方法:返回视频源的数量。
通过这种方式,用户可以方便地从指定的视频源中获取图像数据,适用于YOLO等计算机视觉任务。
这个程序文件是一个用于加载和处理视频流、图像和截图的模块,主要用于与Ultralytics YOLO(一个流行的目标检测模型)配合使用。文件中定义了多个类,分别负责不同类型的数据加载。
首先,SourceTypes
类用于表示输入源的类型,包括网络摄像头、截图、图像文件和张量等。接下来是LoadStreams
类,它负责加载各种类型的视频流,包括RTSP、RTMP、HTTP和TCP流。这个类的构造函数接受源路径和一些参数,如图像大小和视频帧率步幅。它会尝试打开每个视频流,并在后台线程中读取帧。update
方法在后台线程中不断读取视频帧,并将其存储在一个缓冲区中。__next__
方法则返回源路径、处理后的图像和原始图像。
LoadScreenshots
类用于从屏幕捕获截图。它使用mss
库来实现屏幕捕获,并支持指定捕获区域。该类的__next__
方法返回捕获的截图。
LoadImages
类用于加载图像和视频文件。它支持从单个图像文件、视频文件以及图像和视频路径列表中加载数据。构造函数会检查文件是否存在,并根据文件类型进行分类。__next__
方法返回下一个图像或视频帧。
LoadPilAndNumpy
类用于从PIL和Numpy数组加载图像,确保图像格式正确并进行必要的转换。LoadTensor
类则用于从PyTorch张量加载图像,确保输入张量的形状和数值范围符合要求。
最后,autocast_list
函数用于将不同类型的源合并为Numpy数组或PIL图像的列表,get_best_youtube_url
函数用于从YouTube视频中提取最佳质量的MP4视频流URL。
整个模块的设计使得用户可以方便地从多种来源加载数据,并进行后续的处理和分析,适用于目标检测等计算机视觉任务。
11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\ops_dcnv3\functions_init_.py
以下是保留的核心代码部分,并附上详细的中文注释:
# 导入DCNv3Function和dcnv3_core_pytorch模块
from .dcnv3_func import DCNv3Function, dcnv3_core_pytorch
# 这行代码从当前包的dcnv3_func模块中导入了两个重要的功能:
# 1. DCNv3Function:可能是一个自定义的函数或类,用于实现DCNv3(Deformable Convolutional Networks v3)的相关操作。
# 2. dcnv3_core_pytorch:可能是一个核心的PyTorch实现,提供了DCNv3的基础功能或接口。
这段代码的核心在于导入DCNv3相关的功能,以便在后续的代码中使用这些功能进行变形卷积的操作。
这个程序文件是一个Python模块的初始化文件,位于一个名为ops_dcnv3
的目录下,属于YOLOv8算法改进的源码库。文件的开头包含了一些版权信息,表明该代码是由OpenGVLab开发的,并且受MIT许可证的保护。这意味着用户可以自由使用、修改和分发该代码,只要遵循许可证的条款。
在文件的主体部分,使用了from ... import ...
语句来导入其他模块中的功能。具体来说,它从同一目录下的dcnv3_func
模块中导入了DCNv3Function
和dcnv3_core_pytorch
这两个功能。这表明该模块可能与深度学习中的可微分卷积(Deformable Convolution)相关,DCNv3是一种改进的可微分卷积实现,通常用于提高模型在处理复杂形状和物体时的性能。
总的来说,这个初始化文件的作用是为ops_dcnv3
模块提供必要的功能导入,使得在其他地方使用该模块时,可以直接访问DCNv3Function
和dcnv3_core_pytorch
这两个功能,进而支持YOLOv8算法的相关操作和训练过程。
11.5 code\ultralytics\trackers\byte_tracker.py
以下是代码中最核心的部分,并附上详细的中文注释:
import numpy as np
from .basetrack import BaseTrack, TrackState
from .utils import matching
from .utils.kalman_filter import KalmanFilterXYAH
class STrack(BaseTrack):
"""
单目标跟踪表示,使用卡尔曼滤波进行状态估计。
该类负责存储与单个跟踪相关的所有信息,并基于卡尔曼滤波进行状态更新和预测。
"""
shared_kalman = KalmanFilterXYAH() # 所有STrack实例共享的卡尔曼滤波器
def __init__(self, tlwh, score, cls):
"""初始化新的STrack实例。"""
super().__init__()
# 将tlwh格式的边界框转换为tlbr格式并存储
self._tlwh = np.asarray(self.tlbr_to_tlwh(tlwh[:-1]), dtype=np.float32)
self.kalman_filter = None # 特定对象跟踪的卡尔曼滤波器实例
self.mean, self.covariance = None, None # 状态均值和协方差
self.is_activated = False # 跟踪是否已激活的标志
self.score = score # 跟踪的置信度分数
self.tracklet_len = 0 # 跟踪片段的长度
self.cls = cls # 对象的类别标签
self.idx = tlwh[-1] # 对象的索引
def predict(self):
"""使用卡尔曼滤波器预测对象的下一个状态。"""
mean_state = self.mean.copy() # 复制当前均值状态
if self.state != TrackState.Tracked: # 如果状态不是跟踪状态
mean_state[7] = 0 # 将速度设置为0
# 使用卡尔曼滤波器进行预测
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
def activate(self, kalman_filter, frame_id):
"""启动新的跟踪片段。"""
self.kalman_filter = kalman_filter # 设置卡尔曼滤波器
self.track_id = self.next_id() # 获取新的跟踪ID
# 初始化卡尔曼滤波器的状态
self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
self.tracklet_len = 0 # 重置跟踪片段长度
self.state = TrackState.Tracked # 设置状态为跟踪状态
if frame_id == 1:
self.is_activated = True # 如果是第一帧,激活跟踪
self.frame_id = frame_id # 设置当前帧ID
self.start_frame = frame_id # 设置开始帧ID
def update(self, new_track, frame_id):
"""
更新匹配跟踪的状态。
参数:
new_track (STrack): 包含更新信息的新跟踪。
frame_id (int): 当前帧的ID。
"""
self.frame_id = frame_id # 更新当前帧ID
self.tracklet_len += 1 # 增加跟踪片段长度
new_tlwh = new_track.tlwh # 获取新的tlwh格式边界框
# 使用卡尔曼滤波器更新状态
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.convert_coords(new_tlwh)
)
self.state = TrackState.Tracked # 设置状态为跟踪状态
self.is_activated = True # 激活跟踪
self.score = new_track.score # 更新置信度分数
self.cls = new_track.cls # 更新类别标签
self.idx = new_track.idx # 更新索引
@property
def tlwh(self):
"""获取当前边界框位置(左上角x, 左上角y, 宽度, 高度)。"""
if self.mean is None:
return self._tlwh.copy() # 如果均值为空,返回初始值
ret = self.mean[:4].copy() # 复制均值的前四个元素
ret[2] *= ret[3] # 计算宽度
ret[:2] -= ret[2:] / 2 # 计算左上角坐标
return ret
@staticmethod
def tlwh_to_xyah(tlwh):
"""将边界框转换为格式(中心x, 中心y, 宽高比, 高度)。"""
ret = np.asarray(tlwh).copy() # 复制tlwh格式的边界框
ret[:2] += ret[2:] / 2 # 计算中心坐标
ret[2] /= ret[3] # 计算宽高比
return ret
代码核心部分说明:
- STrack类:表示单个目标的跟踪,使用卡尔曼滤波进行状态估计。
- 属性:
shared_kalman
:所有STrack实例共享的卡尔曼滤波器。_tlwh
:存储边界框的左上角坐标和宽高。mean
和covariance
:存储状态的均值和协方差。is_activated
:指示跟踪是否已激活的布尔标志。
- 方法:
predict()
:使用卡尔曼滤波器预测下一个状态。activate()
:激活新的跟踪片段。update()
:更新匹配的跟踪状态。tlwh()
:获取当前边界框位置。tlwh_to_xyah()
:将边界框转换为中心坐标和宽高比格式。
以上是对代码中核心部分的详细注释和说明。
这个程序文件 byte_tracker.py
实现了一个基于 Kalman 滤波器的单目标跟踪算法,主要用于在视频序列中跟踪检测到的对象。它包含两个主要的类:STrack
和 BYTETracker
。
STrack
类用于表示单个对象的跟踪状态。它继承自 BaseTrack
类,主要负责存储与每个跟踪对象相关的信息,包括边界框的位置、Kalman 滤波器的状态、置信度分数等。该类提供了多种方法来预测对象的下一个状态、更新跟踪状态、激活新跟踪、重新激活丢失的跟踪等。具体来说,STrack
使用 Kalman 滤波器来进行状态估计和预测,并提供了将不同格式的边界框进行转换的方法,如从 tlwh(左上角坐标、宽度、高度)到 xyah(中心坐标、宽高比、高度)的转换。
BYTETracker
类则是整个跟踪算法的核心,负责管理和更新多个对象的跟踪状态。它维护了三个列表:已跟踪的对象、丢失的对象和已移除的对象。该类在初始化时设置了 Kalman 滤波器和其他参数,并在每一帧中更新跟踪状态。update
方法是该类的关键,它接收检测结果并根据这些结果更新跟踪状态,包括激活新跟踪、重新激活丢失的跟踪、处理未确认的跟踪等。
在 update
方法中,首先会对检测结果进行处理,筛选出高置信度和低置信度的检测框。接着,利用 Kalman 滤波器预测当前帧中跟踪对象的位置,并通过匈牙利算法进行数据关联,匹配跟踪对象和检测框。然后,更新已匹配的跟踪对象的状态,并处理未匹配的对象,标记为丢失或移除。
此外,BYTETracker
还提供了一些辅助方法,例如计算跟踪对象与检测框之间的距离、合并和过滤跟踪对象列表等。这些方法确保了跟踪算法的高效性和准确性。
总的来说,这个文件实现了一个完整的对象跟踪系统,结合了 Kalman 滤波器和 YOLOv8 的检测能力,能够在视频序列中实时跟踪多个对象。
11.6 train.py
以下是经过简化和注释的核心代码部分:
import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
class DetectionTrainer(BaseTrainer):
"""
基于检测模型的训练类,继承自BaseTrainer类。
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
构建YOLO数据集。
参数:
img_path (str): 包含图像的文件夹路径。
mode (str): 模式,'train'或'val',用户可以为每种模式自定义不同的增强。
batch (int, optional): 批次大小,适用于'rect'模式。默认为None。
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) # 获取模型的最大步幅
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""构造并返回数据加载器。"""
assert mode in ["train", "val"] # 确保模式有效
with torch_distributed_zero_first(rank): # 在分布式训练中,仅初始化一次数据集
dataset = self.build_dataset(dataset_path, mode, batch_size) # 构建数据集
shuffle = mode == "train" # 训练模式下打乱数据
workers = self.args.workers if mode == "train" else self.args.workers * 2 # 根据模式设置工作线程数
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # 返回数据加载器
def preprocess_batch(self, batch):
"""对图像批次进行预处理,包括缩放和转换为浮点数。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 # 将图像转换为浮点数并归一化
if self.args.multi_scale: # 如果启用多尺度
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # 随机选择图像大小
sf = sz / max(imgs.shape[2:]) # 计算缩放因子
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # 计算新的图像形状
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # 调整图像大小
batch["img"] = imgs # 更新批次图像
return batch
def get_model(self, cfg=None, weights=None, verbose=True):
"""返回YOLO检测模型。"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) # 创建检测模型
if weights:
model.load(weights) # 加载权重
return model
def plot_training_samples(self, batch, ni):
"""绘制带有注释的训练样本。"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""从CSV文件绘制指标。"""
plot_results(file=self.csv, on_plot=self.on_plot) # 保存结果图像
代码注释说明:
- 类和方法:
DetectionTrainer
类用于训练YOLO检测模型,包含多个方法用于数据集构建、数据加载、批处理预处理、模型获取和结果绘制等。 - 数据集构建:
build_dataset
方法负责构建YOLO数据集,支持训练和验证模式。 - 数据加载器:
get_dataloader
方法根据指定的模式和批次大小返回数据加载器,支持分布式训练。 - 批处理预处理:
preprocess_batch
方法对输入图像进行归一化和缩放处理,以适应模型输入。 - 模型获取:
get_model
方法创建并返回YOLO检测模型,支持加载预训练权重。 - 结果绘制:
plot_training_samples
和plot_metrics
方法用于可视化训练样本和训练指标,帮助监控训练过程。
这个程序文件 train.py
是一个用于训练 YOLO(You Only Look Once)目标检测模型的实现,继承自 BaseTrainer
类。文件中包含了一系列用于构建数据集、数据加载、预处理、模型设置和训练过程中的可视化等功能的方法。
首先,程序导入了必要的库和模块,包括数学运算、随机数生成、深度学习框架 PyTorch 相关的模块,以及 Ultralytics 提供的用于数据处理和模型训练的工具。接着,定义了 DetectionTrainer
类,该类专门用于基于检测模型的训练。
在 DetectionTrainer
类中,build_dataset
方法用于构建 YOLO 数据集。它接收图像路径、模式(训练或验证)和批次大小作为参数,使用 build_yolo_dataset
函数来创建数据集,支持不同模式下的图像增强。
get_dataloader
方法用于构建并返回数据加载器。它根据模式选择是否打乱数据,并设置工作线程的数量。通过 torch_distributed_zero_first
方法,确保在分布式训练中只初始化一次数据集。
preprocess_batch
方法负责对一批图像进行预处理,包括缩放和转换为浮点数格式。它还支持多尺度训练,通过随机选择图像大小来增强模型的鲁棒性。
set_model_attributes
方法用于设置模型的属性,包括类别数量和类别名称,以便模型能够正确处理数据集中的不同类别。
get_model
方法返回一个 YOLO 检测模型实例,支持加载预训练权重。
get_validator
方法返回一个用于模型验证的 DetectionValidator
实例,负责计算损失和评估模型性能。
label_loss_items
方法用于返回带有标签的训练损失项字典,便于后续的损失监控和分析。
progress_string
方法生成一个格式化的字符串,用于显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。
plot_training_samples
方法用于绘制训练样本及其标注,便于可视化训练过程中的数据。
最后,plot_metrics
和 plot_training_labels
方法分别用于绘制训练过程中的指标和创建带标签的训练图,以便于对模型训练效果的分析和展示。
总体而言,这个文件实现了 YOLO 模型训练的核心功能,涵盖了数据处理、模型构建、训练过程监控和结果可视化等多个方面。
12.系统整体结构(节选)
整体功能和构架概括
该程序库是一个完整的目标检测框架,基于 YOLOv8 算法,旨在提供高效的模型训练、推理和数据处理功能。它包含多个模块,涵盖了从数据加载、模型构建、训练、验证到可视化的各个方面。程序的架构设计灵活,支持多种输入源和模型改进,使得用户能够方便地进行目标检测任务的开发和调试。
主要模块功能如下:
- 数据加载与处理:提供了多种数据加载器,支持从图像、视频流、截图等多种源加载数据,并进行必要的预处理。
- 模型定义与训练:实现了 YOLOv8 模型的构建和训练过程,支持多种训练策略和参数配置。
- 跟踪算法:实现了基于 Kalman 滤波器的目标跟踪算法,能够在视频序列中实时跟踪多个对象。
- 可视化与监控:提供了训练过程中的可视化功能,帮助用户监控训练进度和模型性能。
文件功能整理表
文件路径 | 功能描述 |
---|---|
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\lsknet.py | 定义 LSKNet 模型,包括多层感知机、注意力机制和卷积块等。 |
ui.py | 提供了一个界面,用于运行指定的脚本(如 web.py)。 |
code\ultralytics\data\loaders.py | 实现数据加载器,支持从视频流、图像和截图加载数据。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\ops_dcnv3\functions\__init__.py | 初始化文件,导入可微分卷积(DCNv3)相关功能。 |
code\ultralytics\trackers\byte_tracker.py | 实现基于 Kalman 滤波器的目标跟踪算法,管理和更新跟踪状态。 |
train.py | 负责 YOLO 模型的训练过程,包括数据加载、模型设置和训练监控。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\nas\predict.py | 实现 NAS(神经架构搜索)模型的预测功能。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr\__init__.py | 初始化 RTDETR 模型相关功能。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\segment\train.py | 实现 YOLO 模型的分割训练功能。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\files.py | 提供文件操作的工具函数,如文件路径处理和文件读写。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\data\build.py | 构建数据集的工具,支持数据集的预处理和格式转换。 |
code\ultralytics\utils\tuner.py | 提供模型超参数调优的工具函数。 |
code\ultralytics\models\yolo\obb\val.py | 实现 YOLO 模型的验证功能,评估模型在验证集上的性能。 |
这个表格总结了每个文件的主要功能,帮助用户快速了解整个项目的结构和各个模块的作用。
注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/qunshansj/psio646