互联网医疗场景下的Java大厂面试:从Spring Boot到AI技术的全面考察
故事引入:赵大宝的互联网医疗面试之旅
在互联网医疗公司“健康云”总部,严肃的资深面试官李工正准备面试应聘Java开发岗位的赵大宝。赵大宝自信满满地走进会议室,气氛一时有些紧张又不失幽默。
第一轮:基础技术与业务场景
李工:大宝,我们公司有个在线问诊平台,用户可以通过App与医生进行实时沟通。请说说你在Spring Boot开发RESTful API时的核心流程?
赵大宝(信心满满):哦,这个简单!就是用Spring Boot写Controller,定义@RestController,然后写个@RequestMapping,最后返回数据就行了!
李工:很好,能谈下你用过哪些数据库连接池?选择HikariCP的理由是什么?
赵大宝:呃,我用过HikariCP、C3P0……HikariCP好像更快吧,大家都说它性能好。
李工:是的,性能和资源占用确实优异。那咱们实时问诊有大量并发,日志怎么收集和监控?
赵大宝:日志……一般用Logback,还有ELK Stack啥的,可以搜日志。
李工:不错。那你知道怎么用Swagger生成API文档吗?
赵大宝:Swagger,我用过,可以自动生成接口文档,开发调试很方便。
第二轮:分布式与微服务
李工:健康云平台需要支持高并发和服务拆分,请描述下你对Spring Cloud微服务架构的理解。
赵大宝(有点发虚):Spring Cloud,就是把服务拆开,然后注册到Eureka啥的,还能用Feign远程调用……
李工:那服务之间怎么保证安全通信?
赵大宝:呃……可以用JWT或者OAuth2吧,反正有个认证……
李工:可以继续深入。那分布式下接口幂等性如何保障?
赵大宝:幂等性……就是多次请求结果一样,好像可以用Redis锁,或者数据库唯一索引。
李工:说得还行。那监控微服务健康状况怎么做?
赵大宝:用Prometheus、Grafana可以画图看数据。
第三轮:AI与创新应用
李工:现在我们引入了AI辅助问诊,比如用RAG(检索增强生成)模型做医学文档问答,你了解RAG吗?
赵大宝(一头雾水):RAG,好像是……让AI查资料再回答?嗯,大概是吧。
李工:那你觉得在我们的场景下,AI如何避免“幻觉”输出?
赵大宝:呃……AI幻觉,好像得多查查知识库,不能瞎编吧?
李工:那AI问答系统如何与后端服务集成?
赵大宝:集成……可以用API连起来,或者用Spring AI?
李工(微笑):大宝很有潜力,回去等通知吧!
面试问题答案详解
第一轮详解
-
Spring Boot RESTful API 开发流程:
- 创建Spring Boot工程,引入Web依赖。
- 编写
@RestController
类,使用@RequestMapping
或@GetMapping
等注解映射URL。 - 实现业务逻辑,返回JSON数据(Spring自动处理序列化)。
- 可以结合Swagger/OpenAPI生成在线接口文档,方便前后端联调。
-
数据库连接池与HikariCP:
- 常见连接池有HikariCP、C3P0、Druid等。
- HikariCP以高性能、低延迟、低内存占用著称,Spring Boot默认推荐。
- 配置简单,易于监控,适合高并发医疗场景。
-
日志与监控:
- 日志可通过Logback/Log4j2输出,ELK(Elasticsearch、Logstash、Kibana)负责日志采集、检索与可视化。
- 监控用Micrometer+Prometheus+Grafana,支持服务指标、健康检查等。
-
Swagger/OpenAPI:
- 通过注解自动生成API文档,提高开发效率。
第二轮详解
-
Spring Cloud 微服务架构:
- 服务拆分,注册到Eureka/Consul等注册中心。
- 使用Feign/RestTemplate调用服务,Zuul/Gateway做网关。
- 配置中心、断路器(Resilience4j)、链路追踪(Zipkin/Jaeger)提升系统健壮性。
-
安全通信(JWT/OAuth2):
- JWT在服务间传递用户信息,OAuth2提供授权认证。
- Spring Security、Keycloak等可集成。
-
接口幂等性保障:
- 通过幂等Token、数据库唯一索引、分布式锁(如Redis)防止重复提交。
-
监控微服务健康:
- Prometheus抓取服务指标,Grafana展示图表。
- Spring Boot Actuator暴露健康检查接口。
第三轮详解
-
RAG(检索增强生成)模型:
- 结合向量数据库(如Milvus/Chroma/Redis)和Embedding模型(OpenAI/Ollama)实现知识检索和生成。
- 适合医学文档、病例等场景,提升AI问答准确性。
-
AI幻觉问题:
- 通过知识库检索、多模型比对、人工审核等方式降低AI错误输出。
-
AI问答系统后端集成:
- 通过REST API或gRPC等方式与后端服务集成。
- Spring AI等工具可简化开发。
总结
通过故事化的面试过程,展示了互联网医疗场景下从基础开发到AI创新应用的技术栈考察及业务结合。希望能帮助小白理解大厂面试关注点和实际应用。