有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
code:
#include<bits/stdc++.h>
using namespace std;
const int N=1005;
int f[N],v[N],w[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
for(int j=v[i];j<=m;j++)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
cout<<f[m];
return 0;
}
完全背包问题跟01背包问题相比就是多了个条件:每件物品都有无限件可用,于是:
f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2v]+2w , f[i-1,j-3v]+3w , …)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2v] + w , f[i-1,j-3v]+2w , …)
由上述两个式子可得:f[i,j]=max(f[i,j-v]+w , f[i-1,j]) ,而01背包问题的式子是:f[i,j]=max(f[i-1,j-v]+w , f[i-1,j]) ,我们惊人的发现其实就是比较的对象变了,由之前与i-1比较变成与i比较,所以我们只需将循环的顺序从由大到小改成有小到大即可。